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Abstract 

We describe the system we developed to partic-

ipate in SemEval 2015 Task 1, Paraphrase and 

Semantic Similarity in Twitter. We create simi-

larity vectors from two-skip trigrams of prepro-

cessed tweets and measure their semantic simi-

larity using our UMBC-STS system. We sub-

mit two runs. The best result is ranked eleventh 

out of eighteen teams with F1 score of 0.599. 

1. Introduction 

In this task (Wei, et al., 2015), participants were 

given pairs of text sequences from Twitter trends 

and produced a binary judgment for each stating 

whether or not they are paraphrases (e.g., semanti-

cally the same) and optionally a graded score (0.0 

to 1.0) measuring their degree of semantic equiva-

lence. For example, for the trending topic “A Walk 

to Remember” (a film released in 2002), the pair A 

Walk to Remember is the definition of true love” 

and “A Walk to Remember is on and Im in town 

and Im upset” might be judged as not paraphrases 

with score 0.2 whereas the pair “A Walk to Re-

member is the definition of true love” and “A Walk 

to Remember is the cutest thing” could be judged 

as paraphrases with a score of 0.6. 

Many methods have been proposed to solve the 

paraphrase detection problem. Early approaches 

were often based on lexical matching techniques, 

e.g., word n-gram overlap (Barzilay and Lee, 

2003) or predicate argument tuple matching (Qiu, 

et al., 2006). Some other approaches that go be-

yond simple lexical matching have also been de-

veloped. For example, (Mihalcea, et al., 2006) es-

timated semantic similarity of sentence pairs with 

word-to-word similarity measures and a word 

specificity measure. (Zhang and Patrick, 2005) 

uses text canonicalization to transfer texts of simi-

lar meaning into the same surface text with a high-

er probability than those with different meaning. 

Many of these approaches adopt distributional 

semantic models, but limited to a word level. To 

extend distributional semantic models beyond 

words, several researchers have learned phrase or 

sentence representation by composing the repre-

sentation of individual words (Mitchell and Lapata, 

2010; Baroni and Zamparelli, 2010). An alternative 

approach by (Socher et al., 2011) represents 

phrases and sentences with fixed matrices consist-

ing of pooled word and phrase pairwise similari-

ties. (Le and Mikolov, 2014) learns representation 

of sentences directly by predicting context without 

composition of words.  

In our work, we judge that two sentences are 

paraphrases if they have high degree of semantic 

similarity. We use the UMBC-Semantic Textual 

Similarity system (Lushan Han et al., 2013), which 

provides high accurate semantic similarity meas-

urement. The remainder of this paper is organized 

as follows. Section 2 describes the task and the 

details of our method. Section 3 presents our re-
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sults and a brief discussion.  The last section offers 

conclusions. 

2. Our Method  

To decide whether two tweets are paraphrases or 

not, we use a measurement based on semantic sim-

ilarity values. If two tweets are semantically simi-

lar, they are judged as paraphrases, otherwise they 

are not. We described steps of our method as fol-

lows. 

1.1. Preprocessing 

Generally, tweets are informal text sequences that 

include abbreviations, neologisms, emoticons and 

slang terms as well genre-specific elements such as 

hashtags, URLs and @mentions of other Twitter 

accounts.  This is due to both the informal nature 

of the medium and the requirement to limit content 

to at most 140 characters. Thus, before measuring 

the semantic similarity, we replace abbreviation 

and slang to the readable version. We collected 

about 685 popular abbreviations and slang terms 

from several Web resources
1
 and combined these 

with the provided twitter normalization lexicon 

developed by Han Bo and Timothy Baldwin 

(2011). 

After replacing abbreviations and slang terms, 

we remove all stop words to get our final desired 

processed tweets. Then we produce a set of two-

skip trigrams for each tweet and name these sets as 

trigram sets. We adapted the skip-gram technique 

from (Guthrie, et al., 2006).  

Take the tweet “Google Now for iOS simply 

beautiful” as an example, after removing stop word 

s, we get ‘Google Now iOS simply beautiful’. Then 

a two-skip trigram set is produced: {‘Google Now 

iOS’, ‘Now iOS simply’, ‘iOS simply beautiful’, 

‘Google iOS simply’, ‘Google simply beautiful’, 

‘Now simply beautiful’, ‘Google Now beautiful’, 

‘Google Now simply’, ‘Now iOS beautiful’}, which 

is referred as trigram set. We transform every raw 

tweet into its processed version and then corre-

sponding trigram set.  
 

 

                                                 
1 These included http://webopedia.com, http://blog.-

mltcreative.com and http://internetslang.com and others. 

1.2. LSA Word Similarity Model 

Our LSA word similarity model is a revised ver-

sion of the one we used in the 2013 and 2014 

SemEval semantic text similarity tasks (Han, et al., 

2013, Kashyap et al., 2014). LSA relies on the fact 

that semantically similar words (e.g., cat and feline 

or nurse and doctor) are more likely to occur near 

one another in text.  Thus evidence for word simi-

larity can be computed from a statistical analysis of 

a large text corpus.  We extract raw word co-

occurrence statistics from a portion of a 2007 Stan-

ford WebBase dataset (Stanford, 2001). 

We performed part of speech tagging and lem-

matization on the corpus using the Stanford POS 

tagger (Toutanova et al., 2000). Word/term co-

occurrences were counted with a sliding window 

of  fixed size over the entire corpus. We generate 

two co-occurrence models using window sizes ±1 

and ±4. The smaller window provides more precise 

context which is better for comparing words of the 

same part of speech while the larger one is more 

suitable for computing the semantic similarity be-

tween words of different syntactic categories. 

Our word co-occurrence models are based on a 

predefined vocabulary of 22,000 common English 

open-class words and noun phrases, extended with 

about 2,000 verb phrases from WordNet. The final 

dimensions of our word/phrase co-occurrence ma-

trices are 29,000×29,000 when words/phrases are 

POS tagged.  We apply singular value decomposi-

tion on the word/phrase  co-occurrence matrices 

(Burgess 1998) after transforming the raw 

word/phrase co-occurrence counts into their log 

frequencies, and select the 300 largest singular 

values.  The LSA similarity between two 

words/phrases is then defined as the cosine similar-

ity of their corresponding LSA vectors generated 

by the SVD transformation.  

To compute the semantic similarity of two text 

sequences, we use the simple align-and-penalize 

algorithm described in (Han et al., 2013) with a 

few improvements. These improvements include 

some sets of common disjoint concepts and an en-

hanced stop word list. 

1.3. Features 

For two trigram sets, we compute the semantic 

similarity of every possible pair of trigrams in the-

se two sets using the UMBC Semantic Textual 
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Similarity system. For each pair of tweet (T1 and 

T2), six features are produced as: 

• Feature1 = semantic similarity value between 

each pair of tweets (whole sentence with ab-

breviation and slangs replaced, and stop words 

removed)  

• Feature2 =   

• Feature3 =   

• Feature4 =   

• Feature5 =  

• Feature6 = the weighted average on length of 

tweets of two averages above. 

1.5. Training 

We used the LIBSVM system (Chang and Lin, 

2011) for training a logistic regression model and a 

support vector regression model. We run a grid 

search to find the best parameters for both models. 

All training data (13,063 pairs of tweets) were used 

to train the models without discarding any debata-

ble data. We tested the contribution for of each of 

the features through ablation experiments on the 

development data in which each feature was delet-

ed in each experimental run. Table 1 shows the 

statistical results for each feature ablation run. 

  

Feature deleted F1 Precision Recall 

Feature 1 0.7 0.709 0.728 

Feature 2 0.697 0.706 0.726 

Feature 3 0.697 0.706 0.726 

Feature 4 0.691 0.700 0.722 

Feature 5 0.696 0.706 0.726 

Feature 6 0.695 0.705 0.725 

 
Table 1. Performance of our system on runs against the 

development data in which each feature was removed. 

 

From Table 1, we can see that the feature of lowest 

performance is Feature 1, the semantic similarity 

computed with entire tweets without using the 

skip-gram technique. But we still keep Feature 1 

since performance of these six features is not sig-

nificantly different. We show the performance of 

each model on development data in Table 2.  

 

Model F1 Precision Recall 

Logistic 

Regression 
0.697 0.706 0.726 

Support Vector 

Regression 0.691 0.707 0.726 

 

Table 2. Performance of system on development data. 

 

Since the performance of both systems is almost 

the same, we decide to submit one run of each sys-

tem. 

3.  Results and Discussions 

We submit two runs: Run1 (Logistic Regression) 

obtained an F1 score of 0.599, precision score of 

0.651 and recall score of 0.554, and Run2 (Support 

Vector Regression), which received an F1 of 

0.590, precision of 0.646, and recall of 0.543. 

When ranked, we are in the eighteenth (Run1) and 

the nineteenth (Run2) out of the 38 runs. The first 

rank has F1 score of 0.674. The full distribution of 

F1 score is shown in Figure 1. The relatively low 

ranking of our system might be the result of sever-

al factors. 

First factor is the prevalence of neologisms, 

misspellings, informal slang and abbreviations in 

tweets. Better preprocessing to make the tweets 

closer  to normal text might improve our results. 

 Another factor is the UMBC STS system. Ex-

amples of input on which UMBC STS system per-

form poorly are shown in Table 3. We can group 

these into two sets, each associated with problem 

in performing the paraphrase task.  

The first problem is that a slang word may have 

different meanings when it is used in different gen-

res. As we can see in the first example in Table 3, 

‘bombs’ does not mean ‘a container filled with 

explosive’ but is a synonym of ‘home runs’ when 

mentioned in a sports or baseball context. We can 

recognize this meaning by reading sport articles 

but it is not included in any dictionaries or 

WordNet. Thus our system predicts that the two 

tweets, each containing either ‘bombs’ or ‘home 

runs’,  have low semantic similarity and thus are 

not paraphrases. 

The second problem involves out-of-vocabulary 

words, such as the named entities found in the ex-

amples in Table 3.  Tweet 2 of the second example 
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‘NOW YOU SEE ME and AFTER EARTH Cant 

Outpace FAST FURIOUS 6’ is full of movie 

names whose meanings our STS system cannot 

recognize. We can solve this problem by adding 

name entity recognition to the system. Another 

potential solution would be to adopt a simple 

string-matching component. With string matching, 

we may handle those out-of-vocabulary words sit-

uations similar to the third and fourth example. We 

can match ‘orr’ and ‘chara’ between two tweets of 

the third example and ‘new ciroc’ in the fourth ex-

ample. 

To improve our STS performance, which is 

trained on a corpus that mostly consisted of rea-

sonably well-written narrative text, we need to ex-

pand training corpus. Training a LSA model on a 

collection of tweets or a mixture of tweets and nar-

rative text, and adding name entity recognition 

process may lead to better results. 

  

Figure 1. Ranked F1 score of 38 runs 

 

 

# 
Tweet 1 Tweet 2   System Gold 

1 chris davis is 44 with two bombs Chris Davis has 2 home runs tonight False True 

2 I wanna see the movie after earth 
NOW YOU SEE ME and AFTER EARTH 

Cant Outpace FAST FURIOUS 6 
True False 

3 Orr with a big hit on Chara I keep waiting for the chara vs orr fight False True 

4 New Ciroc Amaretto I NEED THAT Oh shit I gotta try that new ciroc flavor False True 

 

Table 3. Examples of input pairs on which our system performed poorly 

 

4. Conclusion 

We describe our system submitted in participating 

the SemEval 2015 Task 1 Paraphrase and Seman-

tic Similarity in Twitter. We preprocess tweets us-

ing two-skip trigrams to produce sets of possible 

trigrams and measure their semantic similarity us-

ing the UMBC-STS system. We computed the sta-

tistical value as maximum and average of each pair 

and use two regression models; logistic regression 

and support vector regression. Our best performing 

run achieved an F1 score of 0.599 and was ranked 

eleventh out of eighteen teams. 
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