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Abstract

We describe a set of top-performing systems
at the SemEval 2015 English Semantic Textual
Similarity (STS) task. Given two English sen-
tences, each system outputs the degree of their
semantic similarity. Our unsupervised system,
which is based on word alignments across the
two input sentences, ranked 5th among 73 sub-
mitted system runs with a mean correlation of
79.19% with human annotations. We also sub-
mitted two runs of a supervised system which
uses word alignments and similarities between
compositional sentence vectors as its features.
Our best supervised run ranked 1st with a mean
correlation of 80.15%.

1 Introduction

Identification of short text similarity is an important
research problem with application in a multitude of
areas: natural language processing (machine transla-
tion, text summarization), information retrieval (ques-
tion answering), education (short answer scoring),
and so on. The SemEval Semantic Textual Similarity
(STS) task series (Agirre et al., 2012; Agirre et al.,
2013; Agirre et al., 2014; Agirre et al., 2015) has
become a central platform for the task: a publicly
available corpus of more than 14,000 sentence pairs
have been developed over the past four years with
human annotations of similarity for each pair; and a
total of 290 system runs have been evaluated.

In this article, we describe a set of systems that
were submitted at the SemEval 2015 English STS
task (Agirre et al., 2015). Given two English sen-
tences, the objective is to compute their semantic

similarity in the range [0, 5], where the score in-
creases with similarity (i.e., 0 indicates no similarity
and 5 indicates identicality). The official evaluation
metric was the Pearson correlation coefficient with
human annotations. The best of our three system runs
achieved the highest mean correlation (80.15%) with
human annotations among all submitted systems on
five test sets (containing a total of 3000 test pairs).

Early work on sentence similarity (Corley and Mi-
halcea, 2005; Mihalcea et al., 2006; Li et al., 2006;
Islam and Inkpen, 2008) established the basic pro-
cedural framework under which most modern algo-
rithms operate: computing sentence similarity as a
mean of word similarities across the two input sen-
tences. With no human annotated STS data set avail-
able, these algorithms were unsupervised and were
evaluated extrinsically on tasks like paraphrase detec-
tion and textual entailment recognition. The SemEval
STS task series has made an important contribution
through the large annotated data set, enabling intrin-
sic evaluation of STS systems and making supervised
STS systems a reality.

At SemEval 2012, domain-specific training data
was provided for most of the test pairs (Agirre et al.,
2012) and consequently, supervised systems were
the most successful (Bär et al., 2012; Šarić et al.,
2012). These systems combined different similarity
measures, e.g., lexico-semantic, syntactic and string
similarity, using regression models. However, at the
2013 and 2014 STS events, no such training data was
provided; instead, the systems were allowed to use
all past data to train their systems. Interestingly, the
best systems at these two events were unsupervised
(Han et al., 2013; Sultan et al., 2014b); some super-
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Figure 1: Words aligned by our aligner across two sentences taken from the MSR alignment corpus (Brockett, 2007).
(We show only part of the second sentence.) Besides exact word/lemma matches, it identifies and aligns semantically
similar word pairs using PPDB (awarded – received in this example).

vised systems did well, too (Wu et al., 2013; Lynum
et al., 2014). The core component of a typical un-
supervised system is term alignment: semantically
related terms across the two sentences are aligned at
first and then their semantic similarity is computed
as a monotonically increasing function of the degree
of alignment.

At SemEval 2015, we submitted an unsupervised
system based on word alignments which is almost
identical to our winning system at SemEval 2014
(Sultan et al., 2014b). We also submitted a super-
vised ridge regression model that uses (1) the output
of our unsupervised system, and (2) the cosine simi-
larity between the vector representations of the two
sentences (derived from neural word embeddings of
their content words (Baroni et al., 2014)) as its fea-
tures. Our unsupervised system ranked 5th and the
two supervised runs ranked 1st and 3rd. Evaluation
also shows that our best run outperforms the winning
systems at all past SemEval STS events.

2 System Overview

We describe our three system runs in this section in
order of their complexity – new capabilities and/or
features are added with each run.

2.1 Run 1: U

This is an unsupervised system that first aligns related
words across the two input sentences and then out-
puts the proportion of aligned content words as their
semantic similarity. It is similar to our last year’s sys-
tem (Sultan et al., 2014b) based on the word aligner
described in (Sultan et al., 2014a). However, where
last year’s system computed a separate proportion
for each sentence and then took their harmonic mean,
this year’s system computes a single proportion over

all words in the two sentences. In other words, given
sentences S(1) and S(2),

sts(S(1), S(2)) =
na

c (S
(1)) + na

c (S
(2))

nc(S(1)) + nc(S(2))

where nc(S(i)) and na
c (S

(i)) are the number of con-
tent words and the number of aligned content words
in S(i), respectively. This is a conceptually simpler
step and yielded better experimental results on data
from past STS events.

The aligner aligns words based on their semantic
similarity and the similarity between their local se-
mantic contexts in the two sentences. It uses the Para-
phrase Database (PPDB) (Ganitkevitch et al., 2013)
to identify semantically similar words, and relies on
dependencies and surface-form neighbors of the two
words to determine their contextual similarity. Word
pairs are aligned in decreasing order of a weighted
sum of their semantic and contextual similarity. Fig-
ure 1 shows an example set of alignments. For more
details, see (Sultan et al., 2014a).

We also consider a levenshtein distance1 of 1 be-
tween a misspelled word and a correctly spelled word
(of length > 2) to be a match. In all runs, we truncate
at the extremes to keep the score in [0, 5].

2.2 Run 2: S1

A fundamental limitation of our unsupervised system
is that it only relies on PPDB to identify semanti-
cally similar words; consequently, similar word pairs
are limited to only lexical paraphrases. Hence it
fails to utilize semantic similarity or relatedness be-
tween non-paraphrase word pairs (e.g., ‘sister’ and

1the minimum number of single-character edits needed to
change one word into the other, where an edit is an insertion, a
deletion or a substitution.
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‘related’). In this run, we leverage neural word em-
beddings to overcome this limitation. We use the
400-dimensional vectors2 developed by Baroni et
al. (2014). They used the word2vec toolkit3 to ex-
tract these vectors from a corpus of about 2.8 billion
tokens. These vectors performed exceedingly well
across different word similarity data sets in their ex-
periments. Details on their approach and findings can
be found in (Baroni et al., 2014).

Instead of comparing word vectors across the two
input sentences, we adopt a simple vector composi-
tion scheme to construct a vector representation of
each input sentence and then take the cosine simi-
larity between the two sentence vectors as our sec-
ond feature for this run. The vector representing
a sentence is the centroid (i.e., the componentwise
average) of its content lemma vectors.

Finally, we combine the two features – output of
our unsupervised run (U ) and the sentence vectors’
cosine similarity – using a ridge regression model
(implemented in scikit-learn (Pedregosa et al., 2011),
with α = 1.0 and the ‘auto’ solver that automatically
selects a feature weight learning algorithm from a
pool depending on the type of the data). The model is
trained using annotations from SemEval 2012–2014
(details in Section 3).

2.3 Run 3: S2

The aligner used in our previous two runs aligns con-
tent words even if there are no similarities between
their contexts in the two sentences. In this run, we use
an alignment-based feature (in addition to our two
features in S1) where content words are aligned only
if they have some contextual similarity – a common
word either in their dependencies or in a neighbor-
hood of 3 words to the left and 3 words to the right
(considering only content words for the latter).

3 Data

The 3000 test sentence pairs at SemEval 2015 were
divided into five sets, each consisting of pairs from a
different domain. Each pair was assigned similarity
scores in the range [0, 5] by multiple human annota-
tors (0: no similarity, 5: identicality) and the average

2http://clic.cimec.unitn.it/composes/
semantic-vectors.html

3https://code.google.com/p/word2vec/

Data Set Source of Text # of Pairs
answers-forums forum answers 375

answers-students student short answers 750
belief belief annotations 375

headlines news headlines 750
images image descriptions 750

Table 1: Test sets at SemEval STS 2015.

of the annotations was taken as their final similarity
score. We describe each data set briefly in Table 1.

We trained our supervised systems using data from
the past three years of SemEval STS (Agirre et al.,
2012; Agirre et al., 2013; Agirre et al., 2014). For
answers-forums, answers-students and belief, we
used all past annotations. For headlines, we used all
headlines (2013), headlines (2014), deft-news (2014)
and smtnews (2012) pairs. For images, we used all
msrpar (2012; train and test), msrvid (2012; train and
test) and images (2014) pairs. The specific training
corpus selections for the two latter data sets were
based on our experiments with past headlines and im-
ages data, where these subsets yielded better results
than an all-inclusive training set (seemingly due to
the fact that they were drawn from similar domains
and were still large-enough to provide the model with
effective supervision).

4 Evaluation

In addition to the official evaluation at SemEval 2015,
we report evaluation results on past STS (2012–2014)
test data. For all these evaluations, the performance
metric is the Pearson correlation coefficient between
system output and average human annotations. Cor-
relation is computed for each individual test set, and a
weighted sum of all correlations (i.e. over all test sets)
is used as the final evaluation metric. The weight of
a test set is proportional to the number of sentence
pairs it contains.

Before presenting the results, we describe a pre-
processing step for one of the 2015 test sets. Iden-
tifying the right stop words (some of which can be
domain-specific) proved key in our past investiga-
tion of STS (Sultan et al., 2014b); therefore we con-
sider it very important to manually examine indi-
vidual domains to ensure proper categorization of
words. An inspection of the trial data for the answers-
students set indicated that the expressions in the
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Data Set Runs Best
U S1 S2 Score

answers-forums 0.6821 0.7390 0.7241 0.7390
answers-students 0.7879 0.7725 0.7569 0.7879

belief 0.7325 0.7491 0.7223 0.7717
headlines 0.8238 0.8250 0.8250 0.8417

images 0.8485 0.8644 0.8631 0.8713
Weighted Mean 0.7919 0.8015 0.7921 -

Rank 5 1 3 -

Table 2: Performance on STS 2015 data. Each number
in rows 1–5 is the correlation between system output and
human annotations for the corresponding data set. The
rightmost column shows the best score by any system.
The last two rows show the value of the final evaluation
metric and the system rank, respectively, for each run.

following pairs are semantically equivalent for the
given domain: {‘battery terminal’, ‘terminal’} and
{‘electrical state’, ‘state’}. Therefore, we treated the
two words ‘battery’ and ‘electrical’ as special stop
words during occurrences of these pairs across the
input sentences.

4.1 STS 2015 Results

Performances of our three runs on each of the STS
2015 test sets are shown in Table 2. Each bold num-
ber represents the best score by any system on the
corresponding test set and each italic number shows
the best score among our runs. The weighted mean
of correlations and rank for each run is also shown.

Our best run (S1) did not perform the best on all
test sets (in fact it does so on only one test set), but
it maintained the best balance across all test sets.
The second best overall system run (ExBThemis-
themisexp) had a mean correlation of 79.42%. We
found the difference of 0.73% between this system
and S1 to be statistically significant at p < 0.0001
in a two-sample one-tailed z-test4 (unlike last year’s
0.05% (Agirre et al., 2014)).

The third feature in S2 did not prove useful as S2

performed worse than S1 on almost all test sets. This
result falls in line with our observation reported in
(Sultan et al., 2014a): “more often than not content
words are inherently sufficiently meaningful to be
aligned even in the absence of contextual evidence
when there are no competing pairs.”

4Standard deviation was computed from the frequency distri-
bution of correlations across the five test sets.

Year S1 Winning System
2014 0.779 0.761
2013 0.6542 0.6181
2012 0.6803 0.6773

Table 3: Performance of our top system (S1) on past STS
test sets (mean correlation with human annotations). The
score of the winning system at each event is shown on
column 3. S1 outperforms all past winning systems.

Contrary to our findings from past years’ data, the
special stop words for the answers-students test set
(discussed in the previous section) did not improve
performance – considering these words as content
words, we observed a slightly higher correlation of
0.7895 for our unsupervised system U .

4.2 Results on Past Test Sets

Table 3 shows the performance of our best system
S1 on test data from SemEval 2012–2014. To ensure
fair comparison with other systems, for years 2013
and 2014, we used only past data to train our model.
For year 2012, we used the designated training data
for test sets msrpar, msrvid and smteuroparl, and all
2012 training pairs for the other two test sets.

S1 outperformed all winning systems from 2012
through 2014. Without any domain-specific training
data, the top systems at SemEval 2013 and 2014 were
unsupervised. S1 achieved the best performance on
both despite its supervised nature.

4.3 Ablation Study

We performed a feature ablation study for S1 on STS
2015 data to determine the relative importances of its
two features. Table 4 shows the results. Columns 2
and 4 show performances of our U and S1 systems.
(Remember that the former is used as a feature by
the latter.) Column 3 shows the performance of the
second feature of S1 (i.e. cosine similarity between
the sentence vectors) as a measure of STS.

On four of the five test sets, U outperformed sen-
tence vector similarity. However, combining the two
features improved system performance on four out of
five test sets, and overall. These results indicate that
each feature captures aspects of STS that the other
does not and consequently the two complement each
other when used together.
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Data Set U Vector Sim S1

answers-forums 0.6821 0.7330 0.7390
answers-students 0.7879 0.6899 0.7725

belief 0.7325 0.6981 0.7491
headlines 0.8238 0.7511 0.8250

images 0.8485 0.8411 0.8644
Weighted Mean 0.7919 0.7494 0.8015

Table 4: Performance of each individual feature of our
best run (S1) on STS 2015 test sets. Combining the two
features improves performance on all but one test set.

5 Conclusions and Future Work

At SemEval 2014, we reported a top-performing un-
supervised STS system (Sultan et al., 2014b) that
relied only on word alignment. This year, we present
a supervised system that is statistically significantly
better than our last year’s system. Combining a vec-
tor similarity feature derived from word embeddings
with alignment-based similarity, it outperforms all
past and current STS systems. Since it makes use
of only off-the-shelf software5 and data, it is easily
replicable as well.

The primary limitation of our system is the inabil-
ity to model semantics of units larger than words
(phrasal verbs, idioms, and so on). This is an impor-
tant future direction not only for our system but also
for STS and text comparison tasks in general. Incor-
poration of stop word semantics is key to identifying
similarities and differences in subtle aspects of sen-
tential semantics like polarity and modality. Finally,
rather than studying STS as a standalone problem, the
time has come to develop algorithms that can adapt
to requirements posed by different data domains and
applications.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-
ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and
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