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Abstract

We implemented an end-to-end system for dis-
order identification and slot filling. For iden-
tifying spans for both disorders and their at-
tributes, we used a linear chain conditional
random field (CRF) approach coupled with
cTAKES for pre-processing. For combining
disjoint disorder spans, finding relations be-
tween attributes and disorders, and attribute
normalization, we used l2-regularized l2-loss
linear support vector machine (SVM) classifi-
cation. Disorder CUIs were identified using a
back-off approach to YTEX lookup (CUAB1)
or NLM UTS API (CUAB2) if the target text
was not found in the training data. Our best
system utilized UMLS semantic type features
for disorder/attribute span identification and
the NLM UTS API for normalization. It was
ranked 12th in Task 1 (disorder identification)
and 6th in Task 2b (disorder identification and
slot filling) with a weighted F Measure of
0.711.

1 Introduction

One of the core problems in the field of clinical text
processing is the identification and normalization
of medical disorders (Pradhan et al., 2014). A sec-
ondary problem is the identification of attributes for
the identified disorders such as their severity or body
location. Attribute identification and normalization
helps to better describe the disorder context, allowing
for a better determination of the appropriateness of
the discovered disorder for the task at hand.

SemEval-2015 Task 14 addresses these problems
as separate tasks, assessing end to end systems capa-

ble of identifying both disorders and attributes from
unlabeled clinical text. The first task requires par-
ticipants to identify discontinuous disorder spans in
clinical text and normalize them to a UMLS Con-
cept Unique Identifier (CUI) that is both within the
disorder Semantic Group and present in SNOMED
CT. The second task requires identification of disor-
der CUIs as well as 8 additional attributes associated
with each disorder as shown in Table 1 on the shared
task page1. For each attribute, the span offset of the
lexical cue must also be identified, which may be
discontinuous.

2 Approach

We combined and extended our previous work (Gung,
2014; Osborne et al., 2014) for the ShARe/CLEF
2013 eHealth Evaluation Lab (Suominen et al.,
2013). Both previous systems and our base system
for this task are based on the clinical Text Analy-
sis and Knowledge Extraction System (cTAKES)
(Savova et al., 2010), an open source pipeline for
the natural language processing (NLP) of clinical
text that utilizes the Unstructured Information Man-
agement Architecture (UIMA) (Ferrucci and Lally,
2004) framework. Our combined system is avail-
able for download at https://github.com/
jgung/ClearClinical.

We developed two systems for this task that dif-
fered in their method of CUI lookup and the presence
of UMLS semantic type features. The first system
(CUAB1) uses YTEX (Garla et al., 2011) to disam-
biguate CUIs returned from the cTAKES dictionary

1http://alt.qcri.org/semeval2015/task14/
index.php?id=task-description
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Figure 1: Pipeline of the system components

annotator. The second system (CUAB2) uses UMLS
Terminology Services (UTS) for the same task and
additional UMLS features for disorder/attribute span
annotation. For both of these systems, we relied
on cTAKES for pre-processing, using the default
pipeline from the cTAKES ClinicalPipelineFactory
class to perform tokenization, sentence segmentation,
part of speech (POS) tagging and chunking.

2.1 Task 1 - Disorder Identification and
Normalization

We broke down Task 1 into 3 different tasks as shown
in Figure 1: identification of disorder spans, linking
of disjoint disorder spans into single discontinuous
disorders, and association of the final (dis)continuous
disorder spans with CUIs.

2.1.1 Disorder Span Annotation

Span identification in Task 1 was accomplished
with the same begin-inside-outside (BIO) token clas-
sification methodology as in previous work (Gung,
2014) but using the updated training data. Spans of
putative disorders were labeled using a linear chain
CRF with features identical to those used in previ-
ous work. Examples of these features are shown
in Table 1. The disorder span tagger was imple-
mented using the ClearTK machine learning frame-
work (Bethard et al., 2014) which presents a UIMA
interface for machine learning models and wraps clas-
sifiers such as CRFSuite (Okazaki, 2007).

Feature Type Example Feature
Token First token of each of the two

annotations
POS Part-of-speech tags (e.g, NN)

of each of the two annotations
Phrase-chunk Phrase chunks (e.g., NP, VP)

between the two annotations
Dependency path Max distance to common an-

cestor of the two annotations
Dependency tree Concatenation of head word

and governing word for each
of the two annotations

Named entity Number of named entity men-
tions between the two annota-
tions

Table 1: Feature types and examples for features used to
associated disjoint spans into a discontinuous disorder and
to associate attributes with a candidate disorder

2.1.2 Discontinuous Disorder Discovery
In a departure from previous work (Gung, 2014),

we trained our own relation extractor for the dis-
covery of discontinuous spans, rather than relying
on existing models used by ClearNLP’s SRL sys-
tem and the cTAKES relation extractor. We used
a l2-regularized l2-loss linear SVM classifier (via
the ClearTK wrapper to LibLinear) to predict when
two disorder spans identified in the previous step
should be combined into a single disorder. We used
a subset of features from the cTAKES relation ex-
tractor including token features (e.g., last word in
disjoint span), POS features, phrase chunks (e.g.,
phrase chunk between first head), dependency tree
information (e.g., dependencies on POS tags, words),
dependency path information (e.g., mean distance to
common ancestor) and the number of named enti-
ties between the disjoint spans. A list of these fea-
tures with examples is shown in Table 1 and more
interested readers can review the source code made
available.

We explored some additional features to improve
span detection including pointwise mutual informa-
tion from the provided unlabeled MIMIC notes and
CUI-normalized segment header information. Nei-
ther feature provided a performance improvement on
the training data and thus they were excluded from
our final systems.
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System Rank TP FP FN P R F
Strict Results

CUAB1 23 3514 1381 2634 0.718 0.572 0.636
CUAB2 12 4202 1516 1946 0.735 0.683 0.708
ezDI 1 - - - 0.783 0.732 0.757

Relaxed Results
CUAB1 - 3632 1263 2516 0.742 0.591 0.658
CUAB2 - 4357 1361 1791 0.762 0.709 0.734
ezDI - - - - 0.815 0.761 0.787

Table 2: Performance on disorder identification and normalization (Task 1), including rank among the 39 competing
systems (Rank), true positives (TP), false positives (FP), false negatives (FN), precision (P), recall (R) and F-measure
(F). Task ranking was only given for strict scoring.

2.1.3 Disorder Normalization

Disorder normalization in both systems used a
dictionary of text-to-CUI mappings from the training
data as the primary attempt to normalize the disorders.
In CUAB2, any text not normalized by this training
dictionary was assigned a CUI using UMLS UTS
web services whereas in CUAB1 the assignment was
made using the cTAKES dictionary annotator with
YTEX to resolve ambiguous terms. In both systems
text that failed all of these methods was designated
as CUI-less.

2.2 Task 2 - Attribute Identification and
Normalization

We broke this task down into 3 different steps as
shown in Figure 1: detection of attribute spans, asso-
ciation of those spans to the disorders already identi-
fied, and the normalization of the attribute spans (slot
filling).

2.2.1 Attribute Identification

To detect attribute spans we used the same linear
chain CRF model with the same features that we used
to detect disorder spans in Task 1.

As in disorder identification, we labeled tokens as
either the beginning, inside, or outside (BIO) of an
attribute. Contiguous non-outside chunks were as-
sembled and marked as possible candidate attributes.

2.2.2 Associating Attributes with Disorders

We again used a l2-regularized l2-loss linear SVM
classifier model to link our candidate attributes to the
disorders discovered by our system in Task 1. This

System Accuracy
YTEX 0.650
UTS 0.644

Table 3: Accuracy of Disorder Normalization on Training
Data

classifier used the same feature set as was used for
merging disorder spans (see Table 1).

2.2.3 Attribute Normalization
Attributes for disorders were normalized using a

l2-regularized l2-loss linear SVM classifier using as
features the full text of the attribute, the text of the
tokens within the attribute annotation, and the text of
the tokens appended with the attribute type.

3 Results

3.1 Task 1
Table 2 shows the performance of the CUAB systems
on disorder identification and normalization (Task 1),
as well as the performance of the top system in the
shared task. The best CUAB system (CUAB2) used
UMLS semantic type features for disorder span iden-
tification and UMLS Terminology Services (UTS)
for CUI lookup and ranked 12th out of 39 systems,
achieving precision and recall that were both about
0.05 below the top system. CUAB1 was ranked 23rd
but not because the system was less able to normal-
ize disorder CUIs. As shown by the training data in
Table 3, both UTS and YTEX had similar accuracy
in predicting CUIs. A more plausible explanation
for the relatively higher performance of CUAB2 is
a result of more accurate span detection due to its
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System Rank TP FP FN P R F A WA F*A F*WA
CUAB1 17 4627 258 1521 0.947 0.753 0.839 0.873 0.669 0.732 0.561
CUAB2 6 5376 328 772 0.942 0.874 0.907 0.908 0.784 0.824 0.711
UTH-CCB 1 - - - - - 0.926 0.941 0.873 0.871 0.808

Table 4: Performance on disorder identification, normalization and slot-filling (Task 2b), including rank among the
23 competing systems (Rank), true positives (TP), false positives (FP), false negatives (FN), precision (P), recall (R),
F-measure (F), accuracy (A), weighted accuracy (WA).

Slot CUAB1 CUAB2
BodyLoc - 0.656
Disorder CUI 0.783 0.808
Conditional - 0.661
Course - 0.773
Generic - 0.885
Negation - 0.850
Severity - 0.861
Subject - 0.846
Uncertainty - 0.750

Table 5: Weighted accuracy by attribute type on slot-filling

incorporation of additional UMLS lookup features
for span detection that were unintentionally left ab-
sent in CUAB1. Given the nearly identical results in
training between UTS and YTEX, the much better
performance of CUAB2 in Task 1 is best explained
by the importance of vocabulary features in disorder
normalization. Unfortunately the test dataset is not
available for us to re-run and confirm this.

Table 4 shows the performance of the CUAB sys-
tems on the combined task of disorder identification,
normalization and slot-filling (Task 2b). The best
CUAB system (CUAB2) again used UMLS features
for disorder span and attribute annotation and UTS
for CUI lookup and ranked 6th out of 23 systems,
achieving an F-measure, accuracy and weighted ac-
curacy about 0.02, 0.03 and 0.09, respectively, below
the top system.

Table 5 shows the performance of the CUAB sys-
tems broken down by attribute type. The CUAB1
system made only disorder predictions for Task 2b,
hence all other results are omitted.

4 Discussion

One strength of our system is that it took exactly the
same approach (classifier and feature set) to the prob-

lem of merging disjoint disorder spans and the prob-
lem of associating attributes with disorder mentions.
Our CUAB2 system ranked well and was close to the
top systems, which suggests that treating these two
problems in the same way was a reasonable approach.
This lends credence to the notion that deriving new
features for either the merging of disjoint disorder
spans or the association of attributes with disorders
could be useful for either problem.

One issue of concern is that the accuracy of CUI
prediction is still very dependent on training data.
Our submitted systems used a direct string lookup
from a dictionary built on the training data, before
falling back to UTS or YTEX if the example was not
found in the training data. This approach achieved
a disorder CUI accuracy of up to nearly 81%. But
when the training data isn’t used for CUI identifica-
tion, as shown in an experiment on the task training
data (Table 3), we only achieve about 65% accuracy.
This suggests that approximately 15%+ additional ac-
curacy is entirely a result of having already seen the
concept in the training data and that our system (and
others relying on the training data) would likely see
close to a 15% drop off in disorder CUI prediction
accuracy when applied to a new medical sub-domain.

Our scheme uses two classifiers, one to detect and
another to merge entities. Future work may include
investigating the possibility of employing a single
classifier with a more complex tagging schema than
BIO to perform these tasks jointly.

Acknowledgments

This work was supported by the National Center for
Advancing Translational Sciences of the National In-
stitutes of Health under award number UL1TR00165.
The content is solely the responsibility of the authors
and does not necessarily represent the official views
of the National Institutes of Health.

420



References
Steven Bethard, Philip Ogren, and Lee Becker. 2014.

Cleartk 2.0: Design patterns for machine learning
in uima. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 3289–3293, Reykjavik, Iceland, 5.
European Language Resources Association (ELRA).
(Acceptance rate 61%).

David Ferrucci and Adam Lally. 2004. Uima: an architec-
tural approach to unstructured information processing
in the corporate research environment. Nat. Lang. Eng.,
10(3-4):327–348.

V. Garla, V.L. Re III, Z. Dorey-Stein, F. Kidwai,
M. Scotch, J. Womack, A. Justice, and C. Brandt. 2011.
The yale ctakes extensions for document classification:
architecture and application. Journal of the American
Medical Informatics Association, 18(5):614–620.

James Gung. 2014. Using relations for identification and
normalization of disorders: Team clear in the share/clef
2013 ehealth evaluation lab.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (crfs). URL http://www.
chokkan. org/software/crfsuite.

John David Osborne, Binod Gyawali, and Thamar Solorio.
2014. Evaluation of ytex and metamap for clinical
concept recognition. arXiv preprint arXiv:1402.1668.

Sameer Pradhan, Noémie Elhadad, Wendy Chapman,
Suresh Manandhar, and Guergana Savova. 2014.
Semeval-2014 task 7: Analysis of clinical text. Se-
mEval 2014, 199(99):54.

G.K. Savova, J.J. Masanz, P.V. Ogren, J. Zheng, S. Sohn,
K.C. Kipper-Schuler, and C.G. Chute. 2010. Mayo
clinical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and appli-
cations. Journal of the American Medical Informatics
Association, 17(5):507–513.

H Suominen, S Salantera, S Velupillai, et al. 2013. Three
shared tasks on clinical natural language processing. In
Proceedings of the Conference and Labs of the Evalua-
tion Forum.

421


