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Abstract 

We describe a system for semantic role label-

ing adapted to a dependency parsing frame-

work. Verb arguments are predicted over nodes 

in a dependency parse tree instead of nodes in 

a phrase-structure parse tree. Our system par-

ticipated in SemEval-2015 shared Task 15, 

Subtask 1: CPA parsing and achieved an F-

score of 0.516. We adapted features from prior 

semantic role labeling work to the dependency 

parsing paradigm, using a series of supervised 

classifiers to identify arguments of a verb and 

then assigning syntactic and semantic labels. 

We found that careful feature selection had a 

major impact on system performance. How-

ever, sparse training data still led rule-based 

systems like the baseline to be more effective 

than learning-based approaches. 

1 Introduction 

We describe our submission to the SemEval-2015 

Task 15, Subtask 1 on Corpus Pattern Analysis 

(Baisa et al. 2015). This task is similar to semantic 

role labeling but with arguments based on nodes in 

dependency parses instead of a syntactic parse tree.  

The verb’s arguments are identified and labeled 

with both their syntactic and semantic roles. 

For example, consider the sentence “But he 

said Labour did not agree that Britain could or 

should abandon development, either for itself or for 

the developing world.” This subtask involves taking 

that sentence and making the following determina-

tions relative to the given verb “abandon”: 

 “Britain” is the syntactic subject of “abandon” 

and falls under the “Institution” semantic type 

 “development” is the syntactic object of “aban-

don” and is of semantic type “Activity” 

We organize the remainder of our paper as fol-

lows: Section 2 describes our system, Section 3 

presents experiments, and Section 4 concludes.  

2 System Description  

Our system consists of a pipelined five-component 

system plus source data and resources. A system di-

agram is shown in Figure 1. A cascading series of 

MaxEnt classifiers are used to identify arguments, 

their syntactic labels, and then their semantic labels.  

Each token in an input sentence was a training ex-

ample. 

Sketch Engine (Kilgarriff 2014) was used to help 

with featurization. All sentences in the training data 

were parsed and POS tagged using the Stanford 

CoreNLP tools (Manning et al. 2014). This data was 

used to generate features which are then supplied to 

an Argument Identification Classifier (AIC) that 

identifies whether or not a particular token is one of 

the relevant verb’s arguments. 

For the tokens identified as arguments to the verb, 

a Syntax Classifier identifies the syntactic role of 

the token. This is done using a multi-class MaxEnt 

model with the same features as the AIC plus fea-

tures derived from the AIC’s predictions. A similar 

Semantics Classifier follows, taking the Syntax 
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Classifier’s features and output. Finally, a Seman-

tics Consistency Heuristic Filter is applied to clean 

up some of the predictions using a series of heuris-

tics to ensure the system is outputting semantic pre-

dictions that are consistent with the syntax 

predictions for the same token.   

 

Stanford Parser

Featurization

Argument 
Identification 

Classifier

Sketch Engine

Syntax Classifier

Semantics Classifier

Semantics 
Consistency 

Heuristic Filter

Task Data

 
Figure 1: System Architecture Diagram. The input data 

is parsed by the Stanford Parser and the argument heads 

are expanded using the Sketch Engine thesaurus. This 

data is then featurized and passed through three succes-

sive classifiers: the Argument Identification Classifier 

identifies verb arguments, the Syntax Classifier assigns 

syntax labels to the arguments, and the Semantics Clas-

sifier assigns semantic labels to the arguments. Finally, 

the Semantics Consistency Heuristic Filter eliminates 

some systematic errors in the Semantics Classifier. 

2.1 Featurization 

Many of the features used in our system were in-

spired by the system produced by Toutanova et al. 

(2008), which used many features from prior work. 

This was a top-performing system and we incorpo-

rated each of the features that applied to the depend-

ency parsing framework adopted in this task. We 

then augmented this feature set with a number of 

novel additional features. Many of these were adap-

tations of Semantic Role Labeling (SRL) features 

from the phrase-structure to dependency parsing 

paradigm (Gildea and Jurafsky 2002, Surdeanu et 

al. 2003, Pradhan et al. 2004). Others were added to 

generalize better to unseen verbs, which is critical 

for our task. 

Some of our features depend on having a phrase-

structure parse node corresponding to the candidate 

dependency parse node. Since dependency parse 

nodes each correspond to a token in the sentence, 

the tokens corresponding to the candidate node and 

its descendants in the dependency parse tree were 

identified. Then, in the phrase-structure parse tree, 

the lowest ancestor to all of these tokens was taken 

to be the phrase-structure parse node best corre-

sponding to the candidate dependency parse node. 

The baseline features included some inspired by 

Gildea and Jurafsky (2002): 

 Phrase Type: the syntactic label of the corre-

sponding node in the parse tree 

 Predicate Lemma: lemma of the verb 

 Path: the path in the parse tree between the can-

didate syntax node and the verb including the 

vertical direction and syntactic parse label of 

each node (e.g. “--up-->S--down-->NP”) 

 Position: whether the candidate is before or af-

ter the verb in the sentence 

 Voice: whether the sentence is active or passive 

voice; due to sparse details in Gildea and Juraf-

sky this was based on tgrep search pattern heu-

ristics found in Roland and Jurafsky (2001) 

 Head Word of Phrase: the highest token in the 

dependency parse under the syntax parse tree 

node corresponding to the candidate token 

 Sub-Cat CFG: the CFG rule corresponding to 

the parent of the verb, defined by the syntactic 

node labels of the parent and its children 

Additional baseline features were obtained from 

Surdeanu et al. (2003) and Pradhan et al. (2004): 

 First/Last Word/POS: For the syntactic parse 

node corresponding to the candidate node, this 

includes four separate features: the first word in 

the linear sentence order, its part of speech, the 

last word, and its part of speech 

 Left/Right Sister Phrase-Type: The Phrase Type 

of each of the left and right sisters 

 Left/Right Sister Head Word/POS: The word 

and POS of the head of the left and right sisters  

 Parent Phrase-Type: The Phrase Type of the 

parent of the candidate parse node  

 Parent POS/Head-Word: The word and part of 

speech of the parent of the parse node corre-

sponding to the candidate node 
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 Node-LCA Partial Path: The Path between the 

candidate node and the lowest common ances-

tor between the candidate node and the verb 

 PP Parent Head Word: The head word of the 

parent node in the syntax tree, if that parent is a 

prepositional phrase. 

 PP NP Head Word/POS: If the syntax parse 

node representing the candidate node is a PP, 

the head word and POS of the rightmost NP di-

rectly under the PP. 

Finally, baseline features that consisted entirely 

of pairs of already-mentioned features were also 

taken from Xue and Palmer (2004): 

 Predicate Lemma & Path 

 Predicate Lemma & Head Word of Phrase 

 Predicate Lemma & Phrase Type 

 Voice & Position 

 Predicate Lemma & PP Parent Head Word 

We added additional features adapted from the 

aforementioned features to generalize better given 

the sparse training data relative to other SRL tasks: 

 Head POS of Phrase: the tagged POS of the 

Head Word of Phrase 

 Head Lemma of Phrase: the lemma of the Head 

Word of Phrase 

 First/Last Lemma: the lemma of the first and 

last word under the candidate parse node 

 Left/Right Sister Head Lemma: the lemmas of 

the Left/Right Sister Head Words 

 Parent Head Lemma: the lemma of the Parent 

Head Word 

 PP Parent Head Lemma/POS: the lemma and 

part of speech of the PP Parent Head Word  

 PP NP Head Lemma: the lemma of the PP NP 

Head Word 

 Candidate CFG: the context-free grammar rule 

rooted at the syntax parse node corresponding 

to the candidate node (one step down from Sub-

Cat CFG) 

Additional features were added to extend these 

features or to adapt them to dependency parsing: 

 Candidate DP CFG: a CFG-like expansion of 

the dependency parse of the candidate node plus 

children, each represented by its POS (e.g. 

“NNS->PRP$” or “NNS->DT JJ NNS”) 

 Sub-Cat DP CFG: a similar CFG expansion of 

the dependency parse of the parent of the verb  

 First/Last DP Word/Lemma/POS – of all of the 

descendants of the candidate node in the de-

pendency parse, inclusive, the first/last 

word/lemma/POS from the linear sentence 

 Dependency Path: the path in the dependency 

parse from the candidate node to the verb 

 Dependency Node-LCA Partial Path: path in 

the dependency parse from the candidate node 

to its lowest common ancestor with the verb 

 Dependency Depth: the depth in the depend-

ency parse of the candidate node 

 Dependency Descendant Coverage: of all of the 

tokens under the candidate syntax parse node, 

the percentage of those also under the candidate 

node in the dependency parse tree. This 

measures the candidate syntax and dependency 

parse node alignment. 

Additionally, due to the importance of the Pred-

icate Lemma feature in prior SRL work and the need 

to generalize entirely to unseen verbs for evaluation 

in this task, we used Sketch Engine (Kilgarriff 

2014) word sketches for each verb. A word sketch 

is obtained for each unseen test verb and the most 

similar verb from the training data is used as the 

Similar Predicate Lemma feature.  

We use a novel similarity function to identify 

similar verbs. A word sketch for each verb vi identi-

fies an ordered set of n grammatical relations r1i, r2i, 

r3i, ..., rni that tend to co-occur with vi. These are re-

lations like “object”, “subject”, prepositional 

phrases head by “of”, etc. The word sketch for each 

relation rji associated with vi also includes a signifi-

cance value si(rji). For a given verb vi we calculate a 

directional similarity dik with verb vk as: 

𝑑𝑖𝑘 =∑(0.8)𝑗−1|𝑠𝑖(𝑟𝑗𝑖) − 𝑠𝑘(𝑟𝑗𝑖)|

𝑛

𝑗=1

 

|𝑠𝑖(𝑟𝑗𝑖) − 𝑠𝑘(𝑟𝑗𝑖)| is defined as zero if the rela-

tion rji doesn’t appear in both word sketches. The 

final similarity score uik between vi and vk is then: 

𝑢𝑖𝑘 = 𝑢𝑘𝑖 =
𝑑𝑖𝑘 + 𝑑𝑘𝑖

2
 

2.2 Classifiers 

We used a series of three classifiers with similar 

features, each trained using the mallet implementa-

tion of MaxEnt (McCallum 2002). 

First, the AIC is a binary model predicting if a 

given candidate token is an argument of the verb. In 

the dependency parsing framework used for this 
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task, a single token in the dependency parse would 

represent a verbal argument. This was different 

from previous SRL tasks where a node in the parse 

tree was taken as the argument; this is more similar 

to identifying the headword of the phrase that’s an 

argument rather than identifying the full phrase. 

Each token was treated as one example, with all of 

the features described in Section 2.1 calculated for 

each example. We filtered out features that did not 

appear at least five times in the training data, and 

trained with the default learning parameters. 

Next, the multi-class Syntax Classifier uses the 

same features as the AIC plus a binary feature of 

AIC’s score rounded to the nearest tenth, the AIC’s 

predicted class, and these last two combined.  The 

labels predicted were the syntactic label associated 

with the argument in the train data. 

Finally, the multi-class Semantics Classifier pre-

dicts the semantic label of the argument using the 

features from the Syntax Classifier plus its output 

score rounded to the nearest tenth as a binary fea-

ture, its output label, and these last two combined. 

2.3 Semantics Consistency Heuristic Filter 

After running the classifiers, overgeneration by the 

semantic component was cleaned up using heuris-

tics. Semantic predictions for tokens without a syn-

tactic prediction were removed. For tokens with a 

syntactic but not semantic label prediction, if the to-

ken appeared in the train data with a semantic label 

the most common one was taken; if not, the most 

prominent distributional synonym (determined by 

the Sketch Engine thesaurus) found in the training 

data that has a semantic label was used. 

3 Experiments 

The system was evaluated using leave-one-out 

cross-validation on each verb in the train data. For 

the initial baseline configuration, only the features 

present in prior work were included, with a total of 

31 feature classes. This configuration achieved an f-

score of 0.238. The system was then run with our 

new features added, which outperformed the base-

line by a relative 4% with an f-score of 0.248. In 

                                                           
1 Predicate Lemma is a critical feature in prior SRL work. In 

the test data, which only included unseen verbs, we used Sketch 

Engine data to identify the verb in the train data most similar to 

the verb in the test sentence, the Similar Predicate Lemma fea-

these cross-validation experiments, for each train-

ing example we used its Similar Predicate Lemma 

in place of its Predicate Lemma feature. This was a 

pessimistic assumption that we did not apply to the 

final system submitted for evaluation.1 We suspect 

this explains why the final f-score on the test data 

was twice as good as that of the cross-validation ex-

periments. The argument identification module per-

formed well on its own with an f-score of 0.627, 

which is an upper bound on our overall system per-

formance.  

We used a hill climbing heuristic search for the 

best possible subset of the available features. This 

was a time-consuming process that involved run-

ning cross-validation for each feature class being 

evaluated with our three-stage classifier resulting in 

63 classifiers being trained per iteration. All the fea-

ture removals or additions that improved perfor-

mance were greedily accepted, yielding 22% feature 

churn. The best individual feature changes predicted 

0.5% improvements to overall performance, but to-

gether they produced only a 0.9% improvement.  

We repeated this a second time but only made the 

five most valuable changes, yielding a 0.8% point 

improvement. We did not have time to continue this 

greedy search, leaving further performance gains 

from searching for the best collection of features un-

realized. We ended our search with 39 feature clas-

ses included, with only 21 of these from the original 

set. Through the course of these experiments, 10 of 

the original feature classes were removed while 18 

new feature classes were added in our best model. 

A final series of experiments were used to heuris-

tically improve the semantic component which was 

significantly overgenerating. This yielded the Se-

mantics Consistency Heuristics Filter which results 

in a 5% improvement to the overall system perfor-

mance. 

The final results on the test data are shown in Ta-

ble 1. The baseline system still outperformed all 

teams including ours. The baseline was a heuristic 

system that used two dependency parsers to be more 

robust to parsing errors.  It mapped dependency 

parse relations to syntax output directly, with logic 

to handle conjunctions, passives, and other phenom-

ena.  Semantic labels were a mixture of hard-coded 

ture. In an attempt to mirror the features and avoid the possibil-

ity of cheating during our experiments, we repeated the same 

process during the cross-validation experiments, treating the 

other most similar verb in the training data as the Similar Pred-

icate Lemma. 
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values for particular syntactic predictions and the 

most common value in the train data for the corre-

sponding word or syntactic label.  

 
Team F-score 

Baseline 0.624 

FANTASY 0.589 

BLCUNLP 0.530 

CMILLS (our system) 0.516 

Table 1: Performance on Test Data. Systems were evalu-

ated on predicting the syntactic and semantic labels for 

the arguments of seven test verbs not present in the train 

data. Each system was evaluated by independently meas-

uring the f-scores of its syntactic and semantic label pre-

dictions on each verb, averaged together by verb and then 

across verbs to arrive at the final f-score. 

4 Conclusion 

The experiments suggest that more iterations of the 

search for the best possible collection of features 

could yield significant additional improvements in 

system performance. However, we ran out of time 

before being able to complete more iterations of the 

search. While we trailed the second-place system by 

only 1.4% in overall f-score, the first-place system 

was ahead by 7.3% indicating significant improve-

ments are still possible. 

Additionally, the heuristic baseline outperformed 

all systems including ours, indicating that important 

patterns and intuitions were not encoded into fea-

tures effectively. Given the sparsity of training data, 

it is possible that having more data could have also 

helped our approach based on pipelined classifiers. 

In the future, we will evaluate using a single dev 

set instead of using cross-validation to reduce the 

computational cost of experiments. We were con-

cerned about the sparse training data, but given the 

missed opportunity to further optimize the feature 

sets used by our models due to computational re-

source constraints, a single dev set could have been 

a much better approach. We would also like to use 

features from the semantic ontology rather than 

treating the semantic labels as unrelated tokens. 

With our precision and recall within 2% of one 

another and relatively low, it would be challenging 

to reliably generate real-world lexical entries using 

this system, even with a delimited scope. However, 

approaches like this could be valuable at giving lex-

icographers a starting point to verify or modify, ra-

ther than starting from scratch. 

This was a valuable learning experience, and 

while our efforts improved performance over our 

own baseline by nearly 12%, there is still plenty of 

room to improve and we have a clear path to do so 

by incorporating more features and improving ex-

perimental design. 

Acknowledgments 

Thank you to the anonymous reviewers, Ismail El 

Maarouf, and Daniel Cer for their helpful com-

ments. Any mistakes that remain are our own. 

References  

Baisa, Vit, et al. (2015). SemEval-2015 Task 15: A CPA 

dictionary-entry-building task. Proceedings of the 9th In-

ternational Workshop on Semantic Evaluation (SemEval 

2015). Denver, Co, USA, Association for Computational 

Linguistics. 

Gildea, Daniel; Jurafsky, Daniel. (2002). "Automatic La-

beling of Semantic Roles." Computational Linguistics 

28(3): 245-288. 

Kilgarriff, Adam, et al. The Sketch Engine: ten years on. 

In Lexicography (2014): 1-30.  

Manning, Christopher; Surdeanu, Mihai; Bauer, John; 

Finkel, Jenny; Bethard, Steven; and McClosky, David. 

2014. The Stanford CoreNLP Natural Language Pro-

cessing Toolkit. In Proceedings of 52nd Annual Meeting 

of the Association for Computational Linguistics: System 

Demonstrations, pp. 55-60. 

McCallum, Andrew Kachites.  "MALLET: A Machine 

Learning for Language Toolkit." http://mal-

let.cs.umass.edu. 2002. 

Pradhan, Sameer, et al. (2004). Shallow Semantic Pars-

ing using Support Vector Machines. HLT-NAACL. 

Roland, Douglas and Jurafsky, Daniel (2002). "Verb 

sense and verb subcategorization probabilities." The lex-

ical basis of sentence processing: Formal, computational, 

and experimental issues 4: 325-45. 

Surdeanu, Mihai, et al. (2003). Using predicate-argument 

structures for information extraction. Proceedings of the 

41st Annual Meeting of the Association for Computa-

tional Linguistics-Volume 1, Association for Computa-

tional Linguistics. 

Toutanova, Kristina, et al. (2008). "A Global Joint Model 

for Semantic Role Labeling." Computational Linguistics 

34(2): 161-191. 

Xue, Nianwen and Palmer, Martha (2004). Calibrating 

Features for Semantic Role Labeling. EMNLP.  

437


