
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 433–437,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

CMILLS: Adapting Semantic Role Labeling Features to Dependency

Parsing

Chad Mills Gina-Anne Levow
University of Washington University of Washington

Guggenheim Hall, 4th Floor Guggenheim Hall, 4th Floor

Seattle, WA 98195, USA Seattle, WA 98195, USA
chills@uw.edu levow@uw.edu

Abstract

We describe a system for semantic role label-

ing adapted to a dependency parsing frame-

work. Verb arguments are predicted over nodes

in a dependency parse tree instead of nodes in

a phrase-structure parse tree. Our system par-

ticipated in SemEval-2015 shared Task 15,

Subtask 1: CPA parsing and achieved an F-

score of 0.516. We adapted features from prior

semantic role labeling work to the dependency

parsing paradigm, using a series of supervised

classifiers to identify arguments of a verb and

then assigning syntactic and semantic labels.

We found that careful feature selection had a

major impact on system performance. How-

ever, sparse training data still led rule-based

systems like the baseline to be more effective

than learning-based approaches.

1 Introduction

We describe our submission to the SemEval-2015

Task 15, Subtask 1 on Corpus Pattern Analysis

(Baisa et al. 2015). This task is similar to semantic

role labeling but with arguments based on nodes in

dependency parses instead of a syntactic parse tree.

The verb’s arguments are identified and labeled

with both their syntactic and semantic roles.

For example, consider the sentence “But he

said Labour did not agree that Britain could or

should abandon development, either for itself or for

the developing world.” This subtask involves taking

that sentence and making the following determina-

tions relative to the given verb “abandon”:

 “Britain” is the syntactic subject of “abandon”

and falls under the “Institution” semantic type

 “development” is the syntactic object of “aban-

don” and is of semantic type “Activity”

We organize the remainder of our paper as fol-

lows: Section 2 describes our system, Section 3

presents experiments, and Section 4 concludes.

2 System Description

Our system consists of a pipelined five-component

system plus source data and resources. A system di-

agram is shown in Figure 1. A cascading series of

MaxEnt classifiers are used to identify arguments,

their syntactic labels, and then their semantic labels.

Each token in an input sentence was a training ex-

ample.

Sketch Engine (Kilgarriff 2014) was used to help

with featurization. All sentences in the training data

were parsed and POS tagged using the Stanford

CoreNLP tools (Manning et al. 2014). This data was

used to generate features which are then supplied to

an Argument Identification Classifier (AIC) that

identifies whether or not a particular token is one of

the relevant verb’s arguments.

For the tokens identified as arguments to the verb,

a Syntax Classifier identifies the syntactic role of

the token. This is done using a multi-class MaxEnt

model with the same features as the AIC plus fea-

tures derived from the AIC’s predictions. A similar

Semantics Classifier follows, taking the Syntax

433

Classifier’s features and output. Finally, a Seman-

tics Consistency Heuristic Filter is applied to clean

up some of the predictions using a series of heuris-

tics to ensure the system is outputting semantic pre-

dictions that are consistent with the syntax

predictions for the same token.

Stanford Parser

Featurization

Argument
Identification

Classifier

Sketch Engine

Syntax Classifier

Semantics Classifier

Semantics
Consistency

Heuristic Filter

Task Data

Figure 1: System Architecture Diagram. The input data

is parsed by the Stanford Parser and the argument heads

are expanded using the Sketch Engine thesaurus. This

data is then featurized and passed through three succes-

sive classifiers: the Argument Identification Classifier

identifies verb arguments, the Syntax Classifier assigns

syntax labels to the arguments, and the Semantics Clas-

sifier assigns semantic labels to the arguments. Finally,

the Semantics Consistency Heuristic Filter eliminates

some systematic errors in the Semantics Classifier.

2.1 Featurization

Many of the features used in our system were in-

spired by the system produced by Toutanova et al.

(2008), which used many features from prior work.

This was a top-performing system and we incorpo-

rated each of the features that applied to the depend-

ency parsing framework adopted in this task. We

then augmented this feature set with a number of

novel additional features. Many of these were adap-

tations of Semantic Role Labeling (SRL) features

from the phrase-structure to dependency parsing

paradigm (Gildea and Jurafsky 2002, Surdeanu et

al. 2003, Pradhan et al. 2004). Others were added to

generalize better to unseen verbs, which is critical

for our task.

Some of our features depend on having a phrase-

structure parse node corresponding to the candidate

dependency parse node. Since dependency parse

nodes each correspond to a token in the sentence,

the tokens corresponding to the candidate node and

its descendants in the dependency parse tree were

identified. Then, in the phrase-structure parse tree,

the lowest ancestor to all of these tokens was taken

to be the phrase-structure parse node best corre-

sponding to the candidate dependency parse node.

The baseline features included some inspired by

Gildea and Jurafsky (2002):

 Phrase Type: the syntactic label of the corre-

sponding node in the parse tree

 Predicate Lemma: lemma of the verb

 Path: the path in the parse tree between the can-

didate syntax node and the verb including the

vertical direction and syntactic parse label of

each node (e.g. “--up-->S--down-->NP”)

 Position: whether the candidate is before or af-

ter the verb in the sentence

 Voice: whether the sentence is active or passive

voice; due to sparse details in Gildea and Juraf-

sky this was based on tgrep search pattern heu-

ristics found in Roland and Jurafsky (2001)

 Head Word of Phrase: the highest token in the

dependency parse under the syntax parse tree

node corresponding to the candidate token

 Sub-Cat CFG: the CFG rule corresponding to

the parent of the verb, defined by the syntactic

node labels of the parent and its children

Additional baseline features were obtained from

Surdeanu et al. (2003) and Pradhan et al. (2004):

 First/Last Word/POS: For the syntactic parse

node corresponding to the candidate node, this

includes four separate features: the first word in

the linear sentence order, its part of speech, the

last word, and its part of speech

 Left/Right Sister Phrase-Type: The Phrase Type

of each of the left and right sisters

 Left/Right Sister Head Word/POS: The word

and POS of the head of the left and right sisters

 Parent Phrase-Type: The Phrase Type of the

parent of the candidate parse node

 Parent POS/Head-Word: The word and part of

speech of the parent of the parse node corre-

sponding to the candidate node

434

 Node-LCA Partial Path: The Path between the

candidate node and the lowest common ances-

tor between the candidate node and the verb

 PP Parent Head Word: The head word of the

parent node in the syntax tree, if that parent is a

prepositional phrase.

 PP NP Head Word/POS: If the syntax parse

node representing the candidate node is a PP,

the head word and POS of the rightmost NP di-

rectly under the PP.

Finally, baseline features that consisted entirely

of pairs of already-mentioned features were also

taken from Xue and Palmer (2004):

 Predicate Lemma & Path

 Predicate Lemma & Head Word of Phrase

 Predicate Lemma & Phrase Type

 Voice & Position

 Predicate Lemma & PP Parent Head Word

We added additional features adapted from the

aforementioned features to generalize better given

the sparse training data relative to other SRL tasks:

 Head POS of Phrase: the tagged POS of the

Head Word of Phrase

 Head Lemma of Phrase: the lemma of the Head

Word of Phrase

 First/Last Lemma: the lemma of the first and

last word under the candidate parse node

 Left/Right Sister Head Lemma: the lemmas of

the Left/Right Sister Head Words

 Parent Head Lemma: the lemma of the Parent

Head Word

 PP Parent Head Lemma/POS: the lemma and

part of speech of the PP Parent Head Word

 PP NP Head Lemma: the lemma of the PP NP

Head Word

 Candidate CFG: the context-free grammar rule

rooted at the syntax parse node corresponding

to the candidate node (one step down from Sub-

Cat CFG)

Additional features were added to extend these

features or to adapt them to dependency parsing:

 Candidate DP CFG: a CFG-like expansion of

the dependency parse of the candidate node plus

children, each represented by its POS (e.g.

“NNS->PRP$” or “NNS->DT JJ NNS”)

 Sub-Cat DP CFG: a similar CFG expansion of

the dependency parse of the parent of the verb

 First/Last DP Word/Lemma/POS – of all of the

descendants of the candidate node in the de-

pendency parse, inclusive, the first/last

word/lemma/POS from the linear sentence

 Dependency Path: the path in the dependency

parse from the candidate node to the verb

 Dependency Node-LCA Partial Path: path in

the dependency parse from the candidate node

to its lowest common ancestor with the verb

 Dependency Depth: the depth in the depend-

ency parse of the candidate node

 Dependency Descendant Coverage: of all of the

tokens under the candidate syntax parse node,

the percentage of those also under the candidate

node in the dependency parse tree. This

measures the candidate syntax and dependency

parse node alignment.

Additionally, due to the importance of the Pred-

icate Lemma feature in prior SRL work and the need

to generalize entirely to unseen verbs for evaluation

in this task, we used Sketch Engine (Kilgarriff

2014) word sketches for each verb. A word sketch

is obtained for each unseen test verb and the most

similar verb from the training data is used as the

Similar Predicate Lemma feature.

We use a novel similarity function to identify

similar verbs. A word sketch for each verb vi identi-

fies an ordered set of n grammatical relations r1i, r2i,

r3i, ..., rni that tend to co-occur with vi. These are re-

lations like “object”, “subject”, prepositional

phrases head by “of”, etc. The word sketch for each

relation rji associated with vi also includes a signifi-

cance value si(rji). For a given verb vi we calculate a

directional similarity dik with verb vk as:

𝑑𝑖𝑘 =∑(0.8)𝑗−1|𝑠𝑖(𝑟𝑗𝑖) − 𝑠𝑘(𝑟𝑗𝑖)|

𝑛

𝑗=1

|𝑠𝑖(𝑟𝑗𝑖) − 𝑠𝑘(𝑟𝑗𝑖)| is defined as zero if the rela-

tion rji doesn’t appear in both word sketches. The

final similarity score uik between vi and vk is then:

𝑢𝑖𝑘 = 𝑢𝑘𝑖 =
𝑑𝑖𝑘 + 𝑑𝑘𝑖

2

2.2 Classifiers

We used a series of three classifiers with similar

features, each trained using the mallet implementa-

tion of MaxEnt (McCallum 2002).

First, the AIC is a binary model predicting if a

given candidate token is an argument of the verb. In

the dependency parsing framework used for this

435

task, a single token in the dependency parse would

represent a verbal argument. This was different

from previous SRL tasks where a node in the parse

tree was taken as the argument; this is more similar

to identifying the headword of the phrase that’s an

argument rather than identifying the full phrase.

Each token was treated as one example, with all of

the features described in Section 2.1 calculated for

each example. We filtered out features that did not

appear at least five times in the training data, and

trained with the default learning parameters.

Next, the multi-class Syntax Classifier uses the

same features as the AIC plus a binary feature of

AIC’s score rounded to the nearest tenth, the AIC’s

predicted class, and these last two combined. The

labels predicted were the syntactic label associated

with the argument in the train data.

Finally, the multi-class Semantics Classifier pre-

dicts the semantic label of the argument using the

features from the Syntax Classifier plus its output

score rounded to the nearest tenth as a binary fea-

ture, its output label, and these last two combined.

2.3 Semantics Consistency Heuristic Filter

After running the classifiers, overgeneration by the

semantic component was cleaned up using heuris-

tics. Semantic predictions for tokens without a syn-

tactic prediction were removed. For tokens with a

syntactic but not semantic label prediction, if the to-

ken appeared in the train data with a semantic label

the most common one was taken; if not, the most

prominent distributional synonym (determined by

the Sketch Engine thesaurus) found in the training

data that has a semantic label was used.

3 Experiments

The system was evaluated using leave-one-out

cross-validation on each verb in the train data. For

the initial baseline configuration, only the features

present in prior work were included, with a total of

31 feature classes. This configuration achieved an f-

score of 0.238. The system was then run with our

new features added, which outperformed the base-

line by a relative 4% with an f-score of 0.248. In

1 Predicate Lemma is a critical feature in prior SRL work. In

the test data, which only included unseen verbs, we used Sketch

Engine data to identify the verb in the train data most similar to

the verb in the test sentence, the Similar Predicate Lemma fea-

these cross-validation experiments, for each train-

ing example we used its Similar Predicate Lemma

in place of its Predicate Lemma feature. This was a

pessimistic assumption that we did not apply to the

final system submitted for evaluation.1 We suspect

this explains why the final f-score on the test data

was twice as good as that of the cross-validation ex-

periments. The argument identification module per-

formed well on its own with an f-score of 0.627,

which is an upper bound on our overall system per-

formance.

We used a hill climbing heuristic search for the

best possible subset of the available features. This

was a time-consuming process that involved run-

ning cross-validation for each feature class being

evaluated with our three-stage classifier resulting in

63 classifiers being trained per iteration. All the fea-

ture removals or additions that improved perfor-

mance were greedily accepted, yielding 22% feature

churn. The best individual feature changes predicted

0.5% improvements to overall performance, but to-

gether they produced only a 0.9% improvement.

We repeated this a second time but only made the

five most valuable changes, yielding a 0.8% point

improvement. We did not have time to continue this

greedy search, leaving further performance gains

from searching for the best collection of features un-

realized. We ended our search with 39 feature clas-

ses included, with only 21 of these from the original

set. Through the course of these experiments, 10 of

the original feature classes were removed while 18

new feature classes were added in our best model.

A final series of experiments were used to heuris-

tically improve the semantic component which was

significantly overgenerating. This yielded the Se-

mantics Consistency Heuristics Filter which results

in a 5% improvement to the overall system perfor-

mance.

The final results on the test data are shown in Ta-

ble 1. The baseline system still outperformed all

teams including ours. The baseline was a heuristic

system that used two dependency parsers to be more

robust to parsing errors. It mapped dependency

parse relations to syntax output directly, with logic

to handle conjunctions, passives, and other phenom-

ena. Semantic labels were a mixture of hard-coded

ture. In an attempt to mirror the features and avoid the possibil-

ity of cheating during our experiments, we repeated the same

process during the cross-validation experiments, treating the

other most similar verb in the training data as the Similar Pred-

icate Lemma.

436

values for particular syntactic predictions and the

most common value in the train data for the corre-

sponding word or syntactic label.

Team F-score

Baseline 0.624

FANTASY 0.589

BLCUNLP 0.530

CMILLS (our system) 0.516

Table 1: Performance on Test Data. Systems were evalu-

ated on predicting the syntactic and semantic labels for

the arguments of seven test verbs not present in the train

data. Each system was evaluated by independently meas-

uring the f-scores of its syntactic and semantic label pre-

dictions on each verb, averaged together by verb and then

across verbs to arrive at the final f-score.

4 Conclusion

The experiments suggest that more iterations of the

search for the best possible collection of features

could yield significant additional improvements in

system performance. However, we ran out of time

before being able to complete more iterations of the

search. While we trailed the second-place system by

only 1.4% in overall f-score, the first-place system

was ahead by 7.3% indicating significant improve-

ments are still possible.

Additionally, the heuristic baseline outperformed

all systems including ours, indicating that important

patterns and intuitions were not encoded into fea-

tures effectively. Given the sparsity of training data,

it is possible that having more data could have also

helped our approach based on pipelined classifiers.

In the future, we will evaluate using a single dev

set instead of using cross-validation to reduce the

computational cost of experiments. We were con-

cerned about the sparse training data, but given the

missed opportunity to further optimize the feature

sets used by our models due to computational re-

source constraints, a single dev set could have been

a much better approach. We would also like to use

features from the semantic ontology rather than

treating the semantic labels as unrelated tokens.

With our precision and recall within 2% of one

another and relatively low, it would be challenging

to reliably generate real-world lexical entries using

this system, even with a delimited scope. However,

approaches like this could be valuable at giving lex-

icographers a starting point to verify or modify, ra-

ther than starting from scratch.

This was a valuable learning experience, and

while our efforts improved performance over our

own baseline by nearly 12%, there is still plenty of

room to improve and we have a clear path to do so

by incorporating more features and improving ex-

perimental design.

Acknowledgments

Thank you to the anonymous reviewers, Ismail El

Maarouf, and Daniel Cer for their helpful com-

ments. Any mistakes that remain are our own.

References

Baisa, Vit, et al. (2015). SemEval-2015 Task 15: A CPA

dictionary-entry-building task. Proceedings of the 9th In-

ternational Workshop on Semantic Evaluation (SemEval

2015). Denver, Co, USA, Association for Computational

Linguistics.

Gildea, Daniel; Jurafsky, Daniel. (2002). "Automatic La-

beling of Semantic Roles." Computational Linguistics

28(3): 245-288.

Kilgarriff, Adam, et al. The Sketch Engine: ten years on.

In Lexicography (2014): 1-30.

Manning, Christopher; Surdeanu, Mihai; Bauer, John;

Finkel, Jenny; Bethard, Steven; and McClosky, David.

2014. The Stanford CoreNLP Natural Language Pro-

cessing Toolkit. In Proceedings of 52nd Annual Meeting

of the Association for Computational Linguistics: System

Demonstrations, pp. 55-60.

McCallum, Andrew Kachites. "MALLET: A Machine

Learning for Language Toolkit." http://mal-

let.cs.umass.edu. 2002.

Pradhan, Sameer, et al. (2004). Shallow Semantic Pars-

ing using Support Vector Machines. HLT-NAACL.

Roland, Douglas and Jurafsky, Daniel (2002). "Verb

sense and verb subcategorization probabilities." The lex-

ical basis of sentence processing: Formal, computational,

and experimental issues 4: 325-45.

Surdeanu, Mihai, et al. (2003). Using predicate-argument

structures for information extraction. Proceedings of the

41st Annual Meeting of the Association for Computa-

tional Linguistics-Volume 1, Association for Computa-

tional Linguistics.

Toutanova, Kristina, et al. (2008). "A Global Joint Model

for Semantic Role Labeling." Computational Linguistics

34(2): 161-191.

Xue, Nianwen and Palmer, Martha (2004). Calibrating

Features for Semantic Role Labeling. EMNLP.

437

