
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 689–693,
Denver, Colorado, June 4-5, 2015. c©2015 Association for Computational Linguistics

PRHLT: Combination of Deep Autoencoders with Classification and
Regression Techniques for SemEval-2015 Task 11

Parth Gupta
PRHLT Research Center

Universitat Politècnica de València
Camino de Vera, s/n

46022 Valencia, SPAIN
pgupta@dsic.upv.es

Jon Ander Gómez
PRHLT Research Center

Universitat Politècnica de València
Camino de Vera, s/n

46022 Valencia, SPAIN
jon@dsic.upv.es

Abstract

This paper presents the system we developed
for Task 11 of SemEval 2015. Our system had
two stages: The first one was based on deep
autoencoders for extracting features to com-
pactly represent tweets. The next stage con-
sisted of a classifier or a regression function
for estimating the polarity value assigned to
a given tweet. We tested several techniques in
order to choose the ones with the highest accu-
racy. Finally, three regression techniques re-
vealed as the best ones for assigning the polar-
ity value to tweets. We presented six runs cor-
responding to three regression different tech-
niques in combination with two variants of the
autoencoder, one with input as bags of words
and another with input as bags of character 3-
grams.

1 Introduction

Sentiment Analysis from texts is a growing field of
research due to its social and economic relevance.
Task 11 of SemEval-2015 (Semantic Evaluation Ex-
ercises) was proposed to the research community in
order to foster the development of systems and tech-
niques for Sentiment Analysis (Ghosh et al., 2015).

We faced this challenging task with a system
based on deep autoencoders in combination with
classification and regression techniques. We used
deep autoencoders to extract features from tweets by
means of two ways of splitting text: i) words and
ii) character 3-grams. The training of autoencoders
was unsupervised. The extracted features (10) and a
few manually added features (5) were used for train-

ing classifiers or regression functions to estimate the
tweet’s polarity value.

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed system. Section 3
presents the obtained results on the test set. Finally,
conclusions are discussed in Section 4.

2 System Description

Our system consists of two stages: (1) Dimension-
ality reduction by means of deep autoencoders. (2)
Polarity value assignment by using different classi-
fication and regression techniques.

The text of tweets was preprocessed before being
used as input to the autoencoders. The autoencoders
take as input a representation of each tweet. Two
different representations were used: bags of words
and bags of character 3-grams. In both cases the
output of an autoencoder was a vector of 10 real
values. Optionally we added other features in order
to improve the polarity assignment, these additional
features are binary features indicating whether some
symbols or hash tags appear in the tweet. The idea
behind adding these extra features is to set a con-
text for learning under their influence. The different
subsets of used features are described in subsection
2.3. The step of assigning a polarity value to a given
tweet was carried out by a classifier or a regression
function. Several techniques for classification and
regression were tested. Table 2 shows the relation of
the used techniques.

2.1 Tweets Preprocessing

As mentioned above, the input for the autoencoders
was prepared from two different ways of splitting

689

Pattern or regular expression New text
"#" " #"
"@" " @"
"&" " & "
"<" "<"
">" ">"
"&.*;" " HTML "
"\\u0092" "’"
"[0-9]+:[0-9]+[Aa][Mm]" " H "
"[0-9]+:[0-9]+" " H "
"[0-9]+[Aa][Mm]" " H "
"http[s]*://[a-zA-Z0-9\\./-_]+" ""
"http[s]*:/+" ""
"http" ""
"@[_a-zA-Z0-9]+" ""
" : " " "
" [0-9\\.-:]+ " " N "
"[\\u00ff-\\uffff]+" " A "
"!!!+" "!3+"
"\\?\\?\\?+" "?3+"
"\\.\\.\\.+" "?.+"
"\\p{Punct}{3,}" " P "
"> >" ">"
"< <" "<"
">+" ">"
"<+" ">"
"-+" "-"
" +" " "
" " "_"
"_+" "_"

Table 1: Substitution rules used for normalizing the text
of tweets. The double quotes are used here as delimiters,
like in Java for String literals, they are not part of the
pattern. Rules are presented in the same format they were
used as arguments for the method replaceAll() of
class String of Java. Rules were applied in the same
order they appear in this table.

the text of tweets. Before the splitting step, a clean-
ing process was carried out by applying a set of sub-
stitutions. The goal was to normalize the text before
generating the bags of words or character 3-grams.

Table 1 shows the rules used for carrying out such
substitutions. These rules were extracted by us af-
ter analyzing the text of tweets corresponding to the
training set. The order in that these rules were ap-
plied was relevant to the final result. The desired
effects were the following:

• Removing URLs from the text of tweets. We
assumed URLs were not relevant for guessing
the polarity.

• User identifiers were also removed.

• Emoticons and possible animations were also
reduced to a capital A. We were interested in
knowing whether they appear or not.

• Sequences of repeated symbols or punctuation
signs were reduced to one instance or a se-
quence to indicate the repetition.
• Numbers or dates were reduced to a capital let-

ter indicating their appearance.
• Some symbols were forced to be preceded by

a white space in order to facilitate the posterior
splitting into words.
• Sequences of several white spaces were re-

duced to one white space and all white spaces
were converted to underscores.

After the normalizing step, the splitting step was
carried out in order to prepare the input for deep au-
toencoders. Two splitting ways were applied, one
for separating words using white spaces (or under-
scores) and another one using character sequences
of size 3 (character 3-grams).

In the case a tweet was represented as a bag of
words, all the words found in the training set were
used. A special entry for out-of-vocabulary words
was introduced into the word table for generating
the bags of words. We considered tokens as words
those including only letters from the Latin alphabet.
Numbers or other symbols were not included.

In the case of representing tweets as bags of char-
acter 3-grams, only those that appeared three or
more times in the training set were used. The re-
maining ones were considered as out-of-vocabulary.
A special entry for out-of-vocabulary 3-grams was
introduced into the 3-grams table for generating the
bags of 3-grams.

2.2 Deep Autoencoders
Autoencoders provide an unsupervised way to learn
low-dimensional embeddings of the data. Such rep-
resentation can be used for discriminative tasks. We
used a deep autoencoder to extract such features.
The fundamental block of our autoencoder was the
restricted Boltzman machine (RBM). We used the
contrastive-divergence algorithm for pretraining the
autoencoder followed by the fine-tuning to minimize
the reconstruction error shown in Eq. 1 (Hinton and
Salakhutdinov, 2006).

J = ‖X −X ′‖2 (1)

where, X is the original vector and X ′ is its recon-
struction.

690

The architecture1 of the autoencoder was |X|-
200-100-100-10 and the sigmoid function was used
to add non-linearity to the hidden layers except for
the final layer which was linear. We used replicated
softmax to model count data in the visible layer of
the autoencoder (Hinton and Salakhutdinov, 2009).

2.3 Classification and Regression Techniques

Different classification and regression techniques
were tested in order to figure out which ones were
the more appropriated for estimating the polarity
of tweets. This checking process was carried out
with the training set. We used the Scikit-Learn
toolkit (Pedregosa et al., 2011) for all the tested tech-
niques.

Given the output of each autoencoder we used
three different sets of features:

1. Just the vectors of 10 real values obtained from
autoencoders. 10 features.

2. Same 10 features as above plus five bi-
nary features indicating whether some hash
tags or symbols were present in the tweet.
The additional five binary features corre-
sponded to the presence of three hash tags
#irony, #sarcasm, #not, and whether
the tweet contains quotes or emoticons.
In total 15 features.

3. Same 15 features as for the second set
plus additional binary features for indicat-
ing whether any of the hash tags found in
the training set was present in the tweet.
In total 3580 (10+5+3565) features.

Table 2 shows the list of all classification and re-
gression techniques used in the second stage of our
system. All techniques are used from the Scikit-
Learn toolkit (Pedregosa et al., 2011). For train-
ing each classifier or regression function we used the
same input data, i.e. the feature vectors representing
each tweet from the training set and its polarity.

The output of classifiers is the integer value of the
polarity, but in the case of regression functions the
output value is truncated to the nearest integer.

1We did not notice any difference in performance empiri-
cally with other configurations with a general caution that much
larger number of parameters model might lead to over-fitting.

The different classification and regression tech-
niques used in the second stage were configured
with the default values for their hyperparame-
ters (Pedregosa et al., 2011). Some variations of hy-
perparameters were tested, but no further improve-
ments were observed. Our purpose was to check
which techniques were more suitable.

A more exhaustive search in order to find optimal
combinations of hyperparameters for each technique
would be an interesting extension of this work.

3 Results

Tables 2 and 3 show the results obtained with the
test set. The whole training set was used for training
all the tested techniques. It could be observed that
the best results were obtained by the Ensemble of
Extremely Randomized Trees (or Extra-Trees) used
for regression (Geurts et al., 2006). Other ensemble
techniques presented similar results. Focusing our
attention on Table 3 and comparing with the results
shown in Table 2, it could be observed as two vari-
ants of SVMs get results similar to the best ones, but
no significant improvements were observed when
using the set of 3580 features.

4 Conclusions

We developed a system for participating in Task 11
of SemEval-2015 which consisted of two stages. In
the first stage stage we used deep autoencoders for
obtaining a compact representation of tweets. We
tried three sets of features that were used as input for
different classification and regression techniques.

Results obtained in average from the 10-fold
cross-validation we carried out with the training
set revealed that the three most appropriated tech-
niques were three ensembles: Extremely Random-
ized Trees, Random Forest and Bagging of Decision
Trees. The regression setting of these techniques
performed better than that of classification.

The fact that the techniques which obtained the
best results are purely non-parametric and have no
weights for approximating the output value, tell us
that the obtained compact representation of tweets
by means of deep autoencoders needs more analy-
sis. An effort in exploring more configurations of
autoencoders will help us to obtain better compact
representations, which we plan to do in future. We

691

Classification or Regression Technique Cosine Similarity
3-grams 10 words 10 3-grams 15 words 15

Automatic Relevance Determination Regressor 0.469 0.451 0.462 0.525
Bayesian Ridge Linear Regressor 0.552 0.562 0.609 0.618
Elastic Net Regressor 0.544 0.557 0.541 0.557
Ensemble AdaBoost Regressor Exponential 0.311 0.332 0.377 0.351
Ensemble AdaBoost Regressor Linear 0.540 0.556 0.554 0.587
Ensemble AdaBoost Regressor Squared 0.199 0.213 0.314 0.212
Ensemble Bagging Regressor with Decision Trees 0.558 0.549 0.593 0.587
Ensemble of Extra Trees Classifier 0.549 0.542 0.549 0.537
Ensemble of Extra Trees Regressor 0.565 0.557 0.623 0.610
Ensemble of Random Forests Classifier 0.535 0.542 0.536 0.541
Ensemble of Random Forests Regressor 0.554 0.555 0.592 0.610
KNN Classifier with inverse distance weights 0.497 0.497 0.501 0.495
KNN Classifier with uniform weights 0.507 0.526 0.517 0.518
LARS Lasso Linear Regressor 0.546 0.546 0.546 0.546
Lasso Linear Regressor 0.545 0.557 0.545 0.557
Logistic Regression (Classifier) 0.556 0.542 0.545 0.541
Perceptron Classifier 0.469 0.451 0.462 0.525
Passive Aggresive Regressor 0.561 0.378 0.564 0.384
RANSAC Regressor 0.507 0.532 0.547 0.592
Ridge Linear Regressor 0.552 0.563 0.608 0.620
SVM Linear Classifier 0.555 0.539 0.552 0.545
SVM Linear Regressor 0.551 0.552 0.583 0.570
SVM Polynomial Classifier 0.545 0.539 0.540 0.550
SVM Polynomial Regressor 0.587 0.560 0.599 0.610
SVM RBF Classifier 0.541 0.542 0.541 0.538
SVM RBF Regressor 0.593 0.562 0.604 0.560

Table 2: Results of all the tested techniques for the two kind of inputs used for the deep autoencoder: 3-grams and
words, and for feature sets with 10 and 15 features.

Classification or Regression Technique Cosine Similarity
3-grams 3580 features words 3580 features

Bayesian Ridge Linear Regressor 0.605 0.621
Ensemble Bagging Regressor with Decision Trees 0.595 0.605
Ensemble of Extra Trees Regressor 0.626 0.596
Ensemble of Random Forests Regressor 0.593 0.616
Ridge Linear Regressor 0.596 0.615
SVM Linear Regressor 0.598 0.593
SVM RBF Regressor 0.610 0.566

Table 3: Results of some of the tested techniques for the two kind of inputs used for the deep autoencoder: 3-grams
and words, and for the feature set with 3580 features.

also plan to use the tweet polarity information dur-
ing the fine-tuning stage of training as an additional
supervised component.

Acknowledgments

The research work of the first author is supported by
the FPI grant from UPV.

692

References
Pierre Geurts, Damien Ernst and Louis Wehenkel. 2006.

Extremely Randomized Trees. Machine Learning
(ISSN 0885-6125) vol. 63, no. 1, pp. 2–42. Kluwer
Academic Publishers, 2006

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, Antonio Reyes and John Barnden.
2015. SemEval-2015 Task 11: Sentiment Analysis of
Figurative Language in Twitter. In Proc. Int. Workshop
on Semantic Evaluation (SemEval-2015), Co-located
with NAACL and *SEM, Denver, Colorado, US, June
4-5, 2015

Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Re-
ducing the Dimensionality of Data with Neural Net-
works. Science vol. 313, no. 5786, pp. 504–507, 2006

Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot
and Edouard Duchesnay. 2011. Scikit-learn: Machine
Learning in Python, In Journal of Machine Learning
Research, JMLR vol. 12, pp. 2825–2830, 2011

Geoffrey Hinton and Ruslan Salakhutdinov. 2009.
Replicated Softmax: an Undirected Topic Model. In
Advances in Neural Information Processing Systems,
pp. 1607–1614, 2009

693

