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Abstract

We present two systems created for SemEval-
2016s Task 11: Complex Word Identification.
Our two systems, a regression tree and de-
cision tree, were trained with a word’s uni-
gram and lemma word counts, average age-
of-acquisition, and a measure of concreteness.
The systems ranked 5th and 6th, respectively,
on the test set by G-score (the harmonic mean
between accuracy and recall). With the regres-
sion tree’s predictions earning a G-score of
0.766, and the decision tree’s earning 0.765,
the two systems scored within 1 percent of
the score of the best-performing system in the
task.

1 Introduction

Text simplification is the process of reducing the
complexity of a text while preserving the original
meaning. Text simplification may include syntactic
or pragmatic aspects (Siddharthan, 2014), but much
of the work that has been done has focused on lex-
ical simplifications. In lexical simplification, diffi-
cult words or phrases are replaced to make a text
more accessible. This kind of simplification can
benefit several reader populations, including second-
language learners (Petersen and Ostendorf, 2009).

One important first step in lexical simplification
is complex word identification. This step predicts
which words in a text will be difficult for a reader so
that they can then be targeted for simplification.

The International Workshop on Semantic Evalua-
tion for 2016 (SemEval-2016) hosted Task 11: Com-
plex Word Identification (CWI), which asked partic-
ipants to identify words that would be challenging

for non-native English speakers (Paetzold and Spe-
cia, 2016). Task participants were given 2,237 train-
ing examples. Each example contained a word, the
sentence containing the word, and the word’s index
in the sentence. In addition, each word was labeled
as complex or not complex (or simple) by 20 human
annotators, and each word was given a binary label
of complex if at least one annotator thought the word
was hard to read. The individual labels of the 20 an-
notators were also made available to participants.

Submissions were evaluated on a test set of
88,221 words. Test set items had the same format
as the training set, except that they were only anno-
tated by one person, so the labels indicated whether
that annotator alone labeled it complex.

2 Previous Work

This is the first year of the CWI Task, so no previous
work has been done on exactly the same task. How-
ever, substantial work has been done previously in
the general area of characterizing word difficulty.

Traditional readability measures like Flesch-
Kincaid (Kincaid and others, 1975) and Gunning
Fog (Gunning, 1952) rely primarily on word length,
while the Lexile framework considers word length
and unigram frequency. More recent work has incor-
porated n-grams and part of speech information (Pe-
tersen and Ostendorf, 2009; Graesser and others,
2004), word clusters (Deane and others, 2006) to
improve the accuracy of reading level predictions,
while other work has used orthographic and phone-
mic features (Mostow and others, 2002) to predict
where children would have reading difficulty.
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3 Methodology

For each word in the training set, we extracted fea-
tures that we predicted would be good indicators of
a word’s complexity. We also used the labels from
the individual annotators to generate continuous-
valued labels for each of the training words. Finally,
we trained several machine learning models as im-
plemented using Python’s scikit-learn pack-
age (Pedregosa and others, 2011).

3.1 Features

We investigated several potential features for the
CWI Task, based on metrics across various features
for words in the training set (see Table 1).

1. Unigram and lemma frequency from the
Corpus of Contemporary American English
(COCA) (Davies, 2008), using the WordNet
lemmatizer in Python’s nltk package (Loper
and Bird, 2002). Complex words are, on aver-
age, less frequent than simple words.

2. Word age-of-acquisition according to the av-
erage age-of-acquisition (AoA) for a word in a
list of roughly 30,000 English words (Kuper-
man and others, 2012). Complex words, have a
higher mean AoA.

3. Word concreteness, on a scale of 1 to 5, ac-
cording to a list of roughly 40,000 English
words (Brysbaert and others, 2013). Complex
words have higher scores, possibly due to the
inclusion of technical words.

4. Word length, stem length, and lemma length
in characters. For all three, complex words are
longer on average than simple words.

5. Number of word pronunciations in Carnegie
Mellon University’s Pronouncing dictio-
nary (Lenzo, 2007), accessed through nltk.
Complex words have a lower number of
pronunciations on average, possibly because
these words tend to be more technical.

6. Probability of the word’s sequence of char-
acters according to a character-based trigram
language model created with SRILM and
trained on the COCA dataset (Stolcke and

Feature Simple Complex
Unigram Count 443k (1M) 151k (597k)
Lemma Count 183k (742k) 68k (290k)

Age of Acquisition 8.9 (3.2) 9.8 (3.0)
Concreteness 2.8 (0.9) 3.0 (1.0)
Word Length 6.0 (2.5) 6.7 (2.5)

Pronunciation Count 1.4 (0.7) 1.2 (0.5)
Synset Count 9.5 (8.7) 6.7 (8.3)

Table 1: Summary of feature means and standard deviations.

others, 2002). Complex words have lower
log-probabilities. This may be because com-
plex words have more “unlikely” character se-
quences that are hard to decode.

7. Number of synsets in WordNet. Complex
words belong to a lower number of synsets,
possibly because they are more likely to be
unique and domain-specific.

8. Part-of-speech (POS) given by nltk’s part-
of-speech tagger. Nouns are more likely to be
complex words, and verbs are more likely to be
simple words. For models that do not support
categorical features, we performed a one-hot
encoding of the most common tags: NN, NNS,
JJ, RB, and VBD.

We experimented with different combinations of
features, but only five features were used in the
predictions given by our models: unigram and
lemma frequency, age-of-acquisition, concreteness,
and word length. Therefore, those were the features
that we used in our sybmitted system.

3.1.1 Labels
Originally, the training set included binary labels

that correspond to whether at least one annotator
thought a word was complex. However, because
these labels are binary, they are not indicative of the
extent to which the annotators agreed each word was
difficult. It is useful to learn the difference, for ex-
ample, between a word that almost all of the annota-
tors agree is difficult, and one that 19/20 annotators
felt was simple, but one annotator thought was com-
plex.

To help with this, we replaced every binary label
with a continuous label representing the percentage
of annotators who found the word to be complex.
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Description Regression Tree Decision Tree
Accuracy 0.838 0.846
Precision 0.182 0.189

Recall 0.705 0.698
F1-score 0.290 0.298
G-score 0.766 0.765

Table 2: Summary of system performance on the CWI test set

We used thresholding to convert the continuous la-
bels back to binary labels as needed.

3.2 Models
We experimented with Support Vector Machines,
Logisitic Regression, and Perceptrons, but got the
best results from scikit-learn’s implementa-
tion of depth-limited regression and decision trees
with our features and a maximum depth of 3. These
models gave the best performance on average in
terms of cross-validation accuracy, F1-score, and G-
score. Regression trees and decision trees have the
added benefit of providing a level of model inter-
pretability that the other models do not.

Since decision trees requires discrete categories
for training, we used a threshold of 0.25 when pro-
viding the labels to the model for training. That is to
say, all examples in training were labeled complex if
at least 25 percent of annotators marked it complex.
For each cross-validation fold, we used the propor-
tion of the first 19 annotators who labeled a word
complex as labels during training, then evaluated our
model on the labels provided by the 20th annotator.

We also trained our regression tree on the pro-
portion of the first 19 annotators who labeled each
word complex. But since regression trees train on
and predict continuous-valued labels, we used the
percent of annotators directly as labels during train-
ing, then thresholded the model’s prediction for each
word at test time. We got best results with a thresh-
old of 0.05: words were interpreted as complex if
the model predicted its measure of complexity to be
0.05 or greater. These thresholds were chosen be-
cause they gave the best G-score for 5-fold cross-
validation on the training set.

4 Results

On the CWI test set, our regression tree and decision
tree ranked 5th and 6th on G-score, respectively, out
of the 40 system submissions (Paetzold and Specia,

2016). Table 2 breaks down the precision, recall, and
G-score of each model. The models had G-scores
of 0.765 and 0.766. By comparison, the top scoring
system had a G-score of 0.774, and overall the aver-
age G-score was 0.620 with a standard deviation of
0.123 (Paetzold and Specia, 2016).

Prediction
Complex Not Complex

Tr
ut

h Complex 2913 1218
Not Complex 13059 71031

Figure 1: Regression tree confusion matrix on the CWI test set.

Prediction
Complex Not Complex

Tr
ut

h Complex 2884 1247
Not Complex 12355 71735

Figure 2: Decision tree confusion matrix on the CWI test set

Figures 1 and 2 depict the confusion matrices gen-
erated from comparing the trees’ predictions to the
testing labels. Over 90% of the misclassifications
given by both trees were false positives. This indi-
cates that the models tended to overpredict complex
words, which is also seen in the relatively low preci-
sion of both systems.

5 Analysis

Our models relied most heavily on unigram and
lemma frequency features. Even when the AoA,
concreteness, and lemma length features are ex-
cluded, the regression tree and decision tree obtain a
G-score of 0.735 and 0.770, respectively, on the test
set. This indicates that corpus frequency alone is an
extremely good indicator of a word’s complexity.

Despite our submitted models’ success with
corpus-based features, we obtained low precision
scores of 0.18 for each model. These scores were
consistent with results for many of the other systems
participating in the task. The average precision score
was 0.123 with a standard deviation of 0.06 (Paet-
zold and Specia, 2016).

We posit that this problem is due in part to the
difference in distribution between the training and
testing sets for our models. Namely, our models
must train on labels that are representative of the
judgments of multiple annotators, but also be tested
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Figure 3: Distribution of how often a certain number of anno-

tators marked a word complex.

on labels that are representative of the judgment of
only one annotator. The difference in distribution
between the training and testing set means that the
model learns to predict word complexity for a group,
but is evaluated on one person’s judgments. This
problem is exacerbated by the low agreement be-
tween annotators. Figure 3 shows that most words
marked complex are labeled so by only one person.

In addition, some of the labels in the test set are
possibly counterintuitive. For example, in:

The Plan of Management is the main pol-
icy document for the Park and strives to
balance strategic or long-term goals and
tactical or day to day goals.

the word strives and both instances of the word
goals were labeled complex. Intuitively, those words
seem less difficult to us than the words strategic and
tactical, which were both labeled not complex by
the same annotator. This example illustrates what
makes the task so difficult: not only are the testing
and training set distributions different, but the labels
for each are subjective and possibly conflicting.

6 Conclusion

This paper details our submission to SemEval-
2016’s Task 11: Complex Word Identification. We
explored several potential features, eventually sub-
mitting a regression tree and decision tree based on
unigram and lemma frequency, age-of-acquisition,

concreteness, and word length. By incorporating
annotator disagreement into our models through
continuous-valued labels during training and testing,
our models ranked 5th and 6th overall in the Task.
Error analysis reveals that our models had trouble
generalizing the judgments of multiple annotators in
the training set to the judgment of one annotator in
the test set, leading to low precision.

References
M Brysbaert et al. 2013. Concreteness ratings for 40

thousand generally known english word lemmas. Be-
havior Research Methods, 46(3):904–911.

M Davies. 2008. The corpus of contemporary american
english: 520 million words, 1990-present.

P Deane et al. 2006. Differences in Text Structure and
Its Implications for Assessment of Struggling Readers.
Scientific Studies of Reading, 10(3):257–275, July.

A C Graesser et al. 2004. Coh-Metrix:Analysis of text on
cohesion and language. Behavior Research Methods,
Instruments, and Computers, 36:193–202.

R Gunning. 1952. The Technique of Clear Writing.
McGraw-Hill.

J. P. Jr. Kincaid et al. 1975. Derivation of new readabil-
ity formulas for Navy enlisted personnel. Research
Branch Report 8-75.

V Kuperman et al. 2012. Age-of-acquisition ratings for
30,000 english words. Behavior Research Methods,
44(4):978–990.

K Lenzo. 2007. The cmu pronouncing dictionary.
E Loper and S Bird. 2002. Nltk: The natural language

toolkit. In Proc. ACL-02 Workshop on Effective Tools
and Methodologies for Teaching NLP and Comp. Lin-
guistics, ETMTNLP ’02, pages 63–70, Stroudsburg,
PA, USA. Association for Computational Linguistics.

J Mostow et al. 2002. Predicting Oral Reading Miscues.
In Proc. ICSLP.

G Paetzold and L Specia. 2016. Semeval2016, task
11: Complex word identification. In Proc. Sem-Eval
20016 Shared Task 11: Complex Word Identification.

F Pedregosa et al. 2011. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research,
12:2825–2830.

S Petersen and M Ostendorf. 2009. A machine learn-
ing approach to reading level assessment. Computer,
Speech and Language, 23(1):89–106.

A Siddharthan. 2014. A survey of research on text sim-
plification. ITL-International Journal of Applied Lin-
guistics, 165(2):259–298.

A Stolcke et al. 2002. Srilm-an extensible language
modeling toolkit. In Proc. INTERSPEECH.

1037


