@inproceedings{shwartz-etal-2017-acquiring,
title = "Acquiring Predicate Paraphrases from News Tweets",
author = "Shwartz, Vered and
Stanovsky, Gabriel and
Dagan, Ido",
editor = "Ide, Nancy and
Herbelot, Aur{\'e}lie and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*{SEM} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-1019/",
doi = "10.18653/v1/S17-1019",
pages = "155--160",
abstract = "We present a simple method for ever-growing extraction of predicate paraphrases from news headlines in Twitter. Analysis of the output of ten weeks of collection shows that the accuracy of paraphrases with different support levels is estimated between 60-86{\%}. We also demonstrate that our resource is to a large extent complementary to existing resources, providing many novel paraphrases. Our resource is publicly available, continuously expanding based on daily news."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shwartz-etal-2017-acquiring">
<titleInfo>
<title>Acquiring Predicate Paraphrases from News Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vered</namePart>
<namePart type="family">Shwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Ide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple method for ever-growing extraction of predicate paraphrases from news headlines in Twitter. Analysis of the output of ten weeks of collection shows that the accuracy of paraphrases with different support levels is estimated between 60-86%. We also demonstrate that our resource is to a large extent complementary to existing resources, providing many novel paraphrases. Our resource is publicly available, continuously expanding based on daily news.</abstract>
<identifier type="citekey">shwartz-etal-2017-acquiring</identifier>
<identifier type="doi">10.18653/v1/S17-1019</identifier>
<location>
<url>https://aclanthology.org/S17-1019/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>155</start>
<end>160</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Acquiring Predicate Paraphrases from News Tweets
%A Shwartz, Vered
%A Stanovsky, Gabriel
%A Dagan, Ido
%Y Ide, Nancy
%Y Herbelot, Aurélie
%Y Màrquez, Lluís
%S Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F shwartz-etal-2017-acquiring
%X We present a simple method for ever-growing extraction of predicate paraphrases from news headlines in Twitter. Analysis of the output of ten weeks of collection shows that the accuracy of paraphrases with different support levels is estimated between 60-86%. We also demonstrate that our resource is to a large extent complementary to existing resources, providing many novel paraphrases. Our resource is publicly available, continuously expanding based on daily news.
%R 10.18653/v1/S17-1019
%U https://aclanthology.org/S17-1019/
%U https://doi.org/10.18653/v1/S17-1019
%P 155-160
Markdown (Informal)
[Acquiring Predicate Paraphrases from News Tweets](https://aclanthology.org/S17-1019/) (Shwartz et al., *SEM 2017)
ACL
- Vered Shwartz, Gabriel Stanovsky, and Ido Dagan. 2017. Acquiring Predicate Paraphrases from News Tweets. In Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017), pages 155–160, Vancouver, Canada. Association for Computational Linguistics.