@inproceedings{jauhar-hovy-2017-embedded,
title = "Embedded Semantic Lexicon Induction with Joint Global and Local Optimization",
author = "Jauhar, Sujay Kumar and
Hovy, Eduard",
editor = "Ide, Nancy and
Herbelot, Aur{\'e}lie and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*{SEM} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-1025",
doi = "10.18653/v1/S17-1025",
pages = "209--219",
abstract = "Creating annotated frame lexicons such as PropBank and FrameNet is expensive and labor intensive. We present a method to induce an embedded frame lexicon in an minimally supervised fashion using nothing more than unlabeled predicate-argument word pairs. We hypothesize that aggregating such pair selectional preferences across training leads us to a global understanding that captures predicate-argument frame structure. Our approach revolves around a novel integration between a predictive embedding model and an Indian Buffet Process posterior regularizer. We show, through our experimental evaluation, that we outperform baselines on two tasks and can learn an embedded frame lexicon that is able to capture some interesting generalities in relation to hand-crafted semantic frames.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jauhar-hovy-2017-embedded">
<titleInfo>
<title>Embedded Semantic Lexicon Induction with Joint Global and Local Optimization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sujay</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Jauhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Ide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Creating annotated frame lexicons such as PropBank and FrameNet is expensive and labor intensive. We present a method to induce an embedded frame lexicon in an minimally supervised fashion using nothing more than unlabeled predicate-argument word pairs. We hypothesize that aggregating such pair selectional preferences across training leads us to a global understanding that captures predicate-argument frame structure. Our approach revolves around a novel integration between a predictive embedding model and an Indian Buffet Process posterior regularizer. We show, through our experimental evaluation, that we outperform baselines on two tasks and can learn an embedded frame lexicon that is able to capture some interesting generalities in relation to hand-crafted semantic frames.</abstract>
<identifier type="citekey">jauhar-hovy-2017-embedded</identifier>
<identifier type="doi">10.18653/v1/S17-1025</identifier>
<location>
<url>https://aclanthology.org/S17-1025</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>209</start>
<end>219</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Embedded Semantic Lexicon Induction with Joint Global and Local Optimization
%A Jauhar, Sujay Kumar
%A Hovy, Eduard
%Y Ide, Nancy
%Y Herbelot, Aurélie
%Y Màrquez, Lluís
%S Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F jauhar-hovy-2017-embedded
%X Creating annotated frame lexicons such as PropBank and FrameNet is expensive and labor intensive. We present a method to induce an embedded frame lexicon in an minimally supervised fashion using nothing more than unlabeled predicate-argument word pairs. We hypothesize that aggregating such pair selectional preferences across training leads us to a global understanding that captures predicate-argument frame structure. Our approach revolves around a novel integration between a predictive embedding model and an Indian Buffet Process posterior regularizer. We show, through our experimental evaluation, that we outperform baselines on two tasks and can learn an embedded frame lexicon that is able to capture some interesting generalities in relation to hand-crafted semantic frames.
%R 10.18653/v1/S17-1025
%U https://aclanthology.org/S17-1025
%U https://doi.org/10.18653/v1/S17-1025
%P 209-219
Markdown (Informal)
[Embedded Semantic Lexicon Induction with Joint Global and Local Optimization](https://aclanthology.org/S17-1025) (Jauhar & Hovy, *SEM 2017)
ACL