@inproceedings{barrow-peskov-2017-umdeep,
title = "{UMD}eep at {S}em{E}val-2017 Task 1: End-to-End Shared Weight {LSTM} Model for Semantic Textual Similarity",
author = "Barrow, Joe and
Peskov, Denis",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2026",
doi = "10.18653/v1/S17-2026",
pages = "180--184",
abstract = "We describe a modified shared-LSTM network for the Semantic Textual Similarity (STS) task at SemEval-2017. The network builds on previously explored Siamese network architectures. We treat max sentence length as an additional hyperparameter to be tuned (beyond learning rate, regularization, and dropout). Our results demonstrate that hand-tuning max sentence training length significantly improves final accuracy. After optimizing hyperparameters, we train the network on the multilingual semantic similarity task using pre-translated sentences. We achieved a correlation of 0.4792 for all the subtasks. We achieved the fourth highest team correlation for Task 4b, which was our best relative placement.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barrow-peskov-2017-umdeep">
<titleInfo>
<title>UMDeep at SemEval-2017 Task 1: End-to-End Shared Weight LSTM Model for Semantic Textual Similarity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joe</namePart>
<namePart type="family">Barrow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Peskov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a modified shared-LSTM network for the Semantic Textual Similarity (STS) task at SemEval-2017. The network builds on previously explored Siamese network architectures. We treat max sentence length as an additional hyperparameter to be tuned (beyond learning rate, regularization, and dropout). Our results demonstrate that hand-tuning max sentence training length significantly improves final accuracy. After optimizing hyperparameters, we train the network on the multilingual semantic similarity task using pre-translated sentences. We achieved a correlation of 0.4792 for all the subtasks. We achieved the fourth highest team correlation for Task 4b, which was our best relative placement.</abstract>
<identifier type="citekey">barrow-peskov-2017-umdeep</identifier>
<identifier type="doi">10.18653/v1/S17-2026</identifier>
<location>
<url>https://aclanthology.org/S17-2026</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>180</start>
<end>184</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UMDeep at SemEval-2017 Task 1: End-to-End Shared Weight LSTM Model for Semantic Textual Similarity
%A Barrow, Joe
%A Peskov, Denis
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F barrow-peskov-2017-umdeep
%X We describe a modified shared-LSTM network for the Semantic Textual Similarity (STS) task at SemEval-2017. The network builds on previously explored Siamese network architectures. We treat max sentence length as an additional hyperparameter to be tuned (beyond learning rate, regularization, and dropout). Our results demonstrate that hand-tuning max sentence training length significantly improves final accuracy. After optimizing hyperparameters, we train the network on the multilingual semantic similarity task using pre-translated sentences. We achieved a correlation of 0.4792 for all the subtasks. We achieved the fourth highest team correlation for Task 4b, which was our best relative placement.
%R 10.18653/v1/S17-2026
%U https://aclanthology.org/S17-2026
%U https://doi.org/10.18653/v1/S17-2026
%P 180-184
Markdown (Informal)
[UMDeep at SemEval-2017 Task 1: End-to-End Shared Weight LSTM Model for Semantic Textual Similarity](https://aclanthology.org/S17-2026) (Barrow & Peskov, SemEval 2017)
ACL