@inproceedings{melka-bernard-2017-jmp8,
title = "Jmp8 at {S}em{E}val-2017 Task 2: A simple and general distributional approach to estimate word similarity",
author = "Melka, Josu{\'e} and
Bernard, Gilles",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2035/",
doi = "10.18653/v1/S17-2035",
pages = "230--234",
abstract = "We have built a simple corpus-based system to estimate words similarity in multiple languages with a count-based approach. After training on Wikipedia corpora, our system was evaluated on the multilingual subtask of SemEval-2017 Task 2 and achieved a good level of performance, despite its great simplicity. Our results tend to demonstrate the power of the distributional approach in semantic similarity tasks, even without knowledge of the underlying language. We also show that dimensionality reduction has a considerable impact on the results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="melka-bernard-2017-jmp8">
<titleInfo>
<title>Jmp8 at SemEval-2017 Task 2: A simple and general distributional approach to estimate word similarity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Josué</namePart>
<namePart type="family">Melka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gilles</namePart>
<namePart type="family">Bernard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We have built a simple corpus-based system to estimate words similarity in multiple languages with a count-based approach. After training on Wikipedia corpora, our system was evaluated on the multilingual subtask of SemEval-2017 Task 2 and achieved a good level of performance, despite its great simplicity. Our results tend to demonstrate the power of the distributional approach in semantic similarity tasks, even without knowledge of the underlying language. We also show that dimensionality reduction has a considerable impact on the results.</abstract>
<identifier type="citekey">melka-bernard-2017-jmp8</identifier>
<identifier type="doi">10.18653/v1/S17-2035</identifier>
<location>
<url>https://aclanthology.org/S17-2035/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>230</start>
<end>234</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Jmp8 at SemEval-2017 Task 2: A simple and general distributional approach to estimate word similarity
%A Melka, Josué
%A Bernard, Gilles
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F melka-bernard-2017-jmp8
%X We have built a simple corpus-based system to estimate words similarity in multiple languages with a count-based approach. After training on Wikipedia corpora, our system was evaluated on the multilingual subtask of SemEval-2017 Task 2 and achieved a good level of performance, despite its great simplicity. Our results tend to demonstrate the power of the distributional approach in semantic similarity tasks, even without knowledge of the underlying language. We also show that dimensionality reduction has a considerable impact on the results.
%R 10.18653/v1/S17-2035
%U https://aclanthology.org/S17-2035/
%U https://doi.org/10.18653/v1/S17-2035
%P 230-234
Markdown (Informal)
[Jmp8 at SemEval-2017 Task 2: A simple and general distributional approach to estimate word similarity](https://aclanthology.org/S17-2035/) (Melka & Bernard, SemEval 2017)
ACL