@inproceedings{charlet-damnati-2017-simbow-semeval,
title = "{S}im{B}ow at {S}em{E}val-2017 Task 3: Soft-Cosine Semantic Similarity between Questions for Community Question Answering",
author = "Charlet, Delphine and
Damnati, G{\'e}raldine",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2051/",
doi = "10.18653/v1/S17-2051",
pages = "315--319",
abstract = "This paper describes the SimBow system submitted at SemEval2017-Task3, for the question-question similarity subtask B. The proposed approach is a supervised combination of different unsupervised textual similarities. These textual similarities rely on the introduction of a relation matrix in the classical cosine similarity between bag-of-words, so as to get a soft-cosine that takes into account relations between words. According to the type of relation matrix embedded in the soft-cosine, semantic or lexical relations can be considered. Our system ranked first among the official submissions of subtask B."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="charlet-damnati-2017-simbow-semeval">
<titleInfo>
<title>SimBow at SemEval-2017 Task 3: Soft-Cosine Semantic Similarity between Questions for Community Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delphine</namePart>
<namePart type="family">Charlet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Géraldine</namePart>
<namePart type="family">Damnati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the SimBow system submitted at SemEval2017-Task3, for the question-question similarity subtask B. The proposed approach is a supervised combination of different unsupervised textual similarities. These textual similarities rely on the introduction of a relation matrix in the classical cosine similarity between bag-of-words, so as to get a soft-cosine that takes into account relations between words. According to the type of relation matrix embedded in the soft-cosine, semantic or lexical relations can be considered. Our system ranked first among the official submissions of subtask B.</abstract>
<identifier type="citekey">charlet-damnati-2017-simbow-semeval</identifier>
<identifier type="doi">10.18653/v1/S17-2051</identifier>
<location>
<url>https://aclanthology.org/S17-2051/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>315</start>
<end>319</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SimBow at SemEval-2017 Task 3: Soft-Cosine Semantic Similarity between Questions for Community Question Answering
%A Charlet, Delphine
%A Damnati, Géraldine
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F charlet-damnati-2017-simbow-semeval
%X This paper describes the SimBow system submitted at SemEval2017-Task3, for the question-question similarity subtask B. The proposed approach is a supervised combination of different unsupervised textual similarities. These textual similarities rely on the introduction of a relation matrix in the classical cosine similarity between bag-of-words, so as to get a soft-cosine that takes into account relations between words. According to the type of relation matrix embedded in the soft-cosine, semantic or lexical relations can be considered. Our system ranked first among the official submissions of subtask B.
%R 10.18653/v1/S17-2051
%U https://aclanthology.org/S17-2051/
%U https://doi.org/10.18653/v1/S17-2051
%P 315-319
Markdown (Informal)
[SimBow at SemEval-2017 Task 3: Soft-Cosine Semantic Similarity between Questions for Community Question Answering](https://aclanthology.org/S17-2051/) (Charlet & Damnati, SemEval 2017)
ACL