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Abstract

This paper describes the KeLP system par-
ticipating in the SemEval-2017 commu-
nity Question Answering (cQA) task. The
system is a refinement of the kernel-based
sentence pair modeling we proposed for
the previous year challenge. It is imple-
mented within the Kernel-based Learning
Platform called KeLP, from which we in-
herit the team’s name. Our primary sub-
mission ranked first in subtask A, and third
in subtasks B and C, being the only sys-
tems appearing in the top-3 ranking for
all the English subtasks. This shows that
the proposed framework, which has minor
variations among the three subtasks, is ex-
tremely flexible and effective in tackling
learning tasks defined on sentence pairs.

1 Introduction

This paper describes the KeLP system participat-
ing in the SemEval-2017 cQA challenge (Nakov
et al., 2017). The task setting for the English part
is the same as the previous edition (Nakov et al.,
2016): the corpus is extracted from Qatar Living1,
a web forum where people pose questions about
multiple aspects of their daily life in Qatar, and
three subtasks are defined:
Subtask A: Given a question q and its first 10
comments c1, . . . , c10 in its question thread, re-
rank these 10 comments according to their rel-
evance with respect to the question, i.e., the
good comments have to be ranked above poten-
tial or bad comments.
Subtask B: Given a new question o and the set
of the first 10 related questions q1, . . . , q10 (re-
trieved by a search engine), re-rank the related
questions according to their similarity with respect

1http://www.qatarliving.com/forum

to o, i.e., the perfect match and relevant questions
should be ranked above the irrelevant ones.
Subtask C: Given a new question o, and the set
of the first 10 related questions, q1, . . . , q10, (re-
trieved by a search engine), each one associated
with its first 10 comments, cq1, . . . , c

q
10, appearing

in its thread, re-rank the 100 comments according
to their relevance with respect to o, i.e., the good
comments are to be ranked above potential or bad
comments.

We participated to the previous year edition,
where our system (Filice et al., 2016) achieved
very good results, i.e., first in subtask A, third in
B and second in C. For the new year challenge,
we therefore decided to reuse the same system ap-
plied to a new method for selecting tree structures,
(Barrón-Cedeño et al., 2016; Romeo et al., 2016)
summarized in Sec. 3.

We modeled the three subtasks as binary clas-
sification problems: kernel-based classifiers are
trained and the classification score is used to
sort the instances and produce the final ranking.
We implemented models within the Kernel-based
Learning Platform2 (KeLP) (Filice et al., 2015a),
which determined the team’s name. Our tests pro-
vide two main contributions: (i) we asses the re-
sults obtained in (Filice et al., 2016), demonstrat-
ing that our kernel-based models for relational
learning tasks between two texts (Filice et al.,
2015b) are effective for community Question An-
swering. (ii) We studied the impact of text selec-
tion described in (Barrón-Cedeño et al., 2016).

Our primary submission ranked first in subtask
A, and third in subtasks B and C, demonstrat-
ing that the proposed method is very accurate and
adaptable to different learning problems. At the
moment, we could not find out if text selection
is always useful as our contrastive submission not

2http://www.kelp-ml.org/
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using it turned out to be much more accurate for
Task B.

In the reminder, Section 2 introduces the pro-
posed kernel-based system, Section 3 describes
the pruning technique to select the relevant parts
from the input sentences, while Section 4 reports
official results.

2 The KeLP system: kernel-based
learning from text pairs

In the three subtasks, the underlying problem is
to understand if two texts are related. Thus, in
subtasks A and C, each pair, (question, com-
ment), generates a training instance for a binary
Support Vector Machine (SVM) (Chang and Lin,
2011), where the positive label is associated with
a good comment and the negative label includes
the potential and bad comments. In subtask B, we
evaluated the similarity between two questions.
Each pair generates a training instance for SVM,
where the positive label is associated with the per-
fect match or relevant classes and the negative la-
bel is associated with the irrelevant ; the result-
ing classification score is used to rank the question
pairs.

In KeLP, the SVM learning algorithm operates
on a kernel combination of tree kernels and a lin-
ear kernel. In particular the linear kernel is applied
on feature vectors containing (i) linguistic simi-
larities between the texts in a pair (Section 2.1);
(ii) task-specific features (Section 2.3).

Tree kernels are applied to evaluate inter-pair
similarities between sentence pairs, in order to au-
tomatically discover pairwise relational patterns.

2.1 Intra-pair similarities
In subtasks A and C, a good comment is likely
to share similar terms with the question. In sub-
task B a question that is relevant to another prob-
ably shows common words. Following this intu-
ition, given a text pair (either question/comment
or question/question), we define a feature vector
whose dimensions reflect the following similarity
metrics:

• Lexical Similarities: Cosine similarity, Jac-
card coefficient (Jaccard, 1901) and contain-
ment measure (Broder, 1997) of n-grams
of word lemmas (n = 1, 2, 3, 4 was used
in all experiments); Longest common sub-
string measure (Gusfield, 1997), Longest
common subsequence measure (Allison and

Dix, 1986), and Greedy String Tiling (Wise,
1996).

• Syntactic Similarities: Cosine similarity of
n-grams of part-of-speech tags. It considers
a shallow syntactic similarity (n = 1, 2, 3, 4
was used in all experiments); Partial tree ker-
nel (Moschitti, 2006) between the parse tree
of the sentences.

• Semantic Similarities: Cosine similarity be-
tween additive representations of word em-
beddings generated by applying word2vec
(Mikolov et al., 2013) to the entire Qatar Liv-
ing corpus from SemEval 20153. Five fea-
tures are derived considering (i) only nouns,
(ii) only adjectives, (iii) only verbs, (iv) only
adverbs and (v) all the above words.

These metrics are computed in all the subtasks
between the two elements within a pair, i.e., q and
ci for subtask A, q and o for subtask B, o and ci
for subtask C. In addition, in subtasks B and C,
the similarity metrics (except the Partial Tree Ker-
nel similarity) are computed between o and the en-
tire thread of q, concatenating q with its answers.
Similarities between q and o are also employed in
subtask C.

2.2 Inter-pair kernel methods
In tasks A and C, some question types may have
an expected answering form. Similarly, in Task B,
related questions may be characterized by the ap-
plication of some latent paraphrasing rules. Such
pairwise patterns cannot be captured by any intra-
pair similarity feature, and require an alternative
approach. Specific features may be manually de-
fined, but this would require a complex feature en-
gineering.

To automatize relational learning between pairs
of texts, one of the early works is (Moschitti
et al., 2007; Moschitti, 2008). This approach was
improved in several subsequent researches (Sev-
eryn and Moschitti, 2012; Severyn et al., 2013a,b;
Severyn and Moschitti, 2013; Tymoshenko et al.,
2014; Tymoshenko and Moschitti, 2015), exploit-
ing relational tags and linked open data. In partic-
ular, in (Filice et al., 2015b), we defined new inter-
pair methods to directly employ text pairs into a
kernel-based learning framework.

The kernels we proposed can be directly applied
to subtask B and to subtasks A and C for learn-

3http://alt.qcri.org/semeval2015/task3

327



S

·
·
?

NP

NNP

Qatar

PP

IN

in

ADVP

RB

here

REL-NP

NN

beach

REL-JJS

REL-best

DT

the

VP

VBZ

is

NP

WDT

which

S

REL-NP

NN

option

REL-JJS

REL-best

DT

the

VP

VBZ

is

NP

NNP

resort

NNP

Sealine

Figure 1: Structural Representation of a question-answer pair.

ing question-question and question-answer pair-
wise patterns (see also (Tymoshenko et al., 2016;
Da San Martino et al., 2016). As shown in Figure
1, a pair of sentences is represented as pair of their
corresponding shallow parse trees, where common
or semantically similar lexical nodes are linked us-
ing a tagging strategy (which is propagated to their
upper constituents). This method discriminates
aligned sub-fragments from non-aligned ones, al-
lowing the learning algorithm to capture relational
patterns, e.g., the REL-best beach and the REL-
best option. Thus, given two pairs of sentences
pa = 〈a1, a2〉 and pb = 〈b1, b2〉, some tree kernel
combinations can be defined:

PTK+(pa, pb) = PTK(a1, b1) + PTK(a2, b2)
PTK×(pa, pb) = PTK(a1, b1)× PTK(a2, b2)

where PTK is the Partial Tree Kernel (PTK) (Mos-
chitti, 2006). Tree kernels, computing the shared
substructures between parse trees, are effective
in evaluating the syntactic similarity between two
texts. The proposed tree kernel combinations ex-
tend such reasoning to text pairs.

2.3 Task Specific Features
While the features described so far can be effec-
tively applied to any sentence pair modeling task,
in this section, we describe features specifically
developed for the cQA domain.

• Ranking Features: The ten questions related
to an original question are retrieved using a
search engine. We use their absolute and rel-
ative ranks4 as features for subtasks B and C
(for the latter the question rank is given to
all the comments within the related question
thread).

• Heuristics: We adopt the heuristic features
described in (Barrón-Cedeño et al., 2015),
which can be applied to subtasks A and C.

4Some of the results retrieved by the search engine were
filtered out, because they were threads with less than 10 com-
ments, or documents out of Qatar Living. Therefore, the
threads in the dataset may have an associated rank higher than
10. The relative rank maps such absolute values into [1;10].

In particular, forty-five features capture some
comment characteristics such as its length,
its category (Socializing, Life in Qatar, etc.),
whether it includes URLs, emails, or other
particular words, etc.

• Thread-based features: As discussed in
(Barrón-Cedeño et al., 2015), comments in a
common thread are strongly interconnected:
users replicate to each others and start a con-
crete discussion. We used some specific fea-
tures for subtasks A and C that aim at cap-
turing some thread-level dependencies, such
as whether a comment is part of a dialogue
or whether a comment is followed by an ac-
knowledgment from the user who asked the
question

• Stacking features: A good comment for a
question q should be also good for an origi-
nal question o if q and o are strongly related,
i.e., q is relevant or a perfect match to o. We
thus developed a stacking strategy for Sub-
task C that uses the following scores in the
classification step, w.r.t. an original question
o and the comment ci from the thread of q:

– pq,ci , which is the score of the pair
〈q, ci〉 provided by the model trained on
Subtask A;

– po,ci , which is the score of the pair
〈o, ci〉 provided by the model trained on
Subtask A;

– po,q, which is the score of the pair 〈o, q〉
provided by the model trained on Sub-
task B.

Starting from these scores, we built the fol-
lowing features: (i) values and signs of pq,ci ,
po,ci and po,q (6 feats); (ii) a boolean fea-
ture indicating whether both pq,ci and po,q are
positive; (iii) min value = min(pq,ci , po,q);
(iv) max value = max(pq,ci , po,q); (v) aver-
age value = 1

2(pq,ci + po,q).

3 Tree Pruning Techniques

We propose to reduce the size of the input trees
by removing all nodes and branches that are less
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discriminative for the task. To determine such
fragments, we use the supervised approach de-
scribed in (Barrón-Cedeño et al., 2016). After
training a tree kernel, K(), on pairs of trees, the
solution of the dual optimization problem is ex-
pressed as a linear combination of a subset of the
training examples, i.e., the support vectors: M =
{(αj , (aj , bj))}, where the (aj , bj) ∈ A × B is a
pair of parse trees (aj could be the one of an orig-
inal or related question and bj the one of a related
question or a comment, depending on the subtask)
and αj are the coefficients of the combination. The
classification of a new example is obtained as the
sign of the score function f():

f (a, b) =
∑

1≤j≤|M |
αjK ((a, b), (aj , bj)) , (1)

where |M | is the number of support vectors, i.e.,
the number of elements of the set M . The higher
the absolute value of the score of an example, the
more confident the learning algorithm is in clas-
sifying it. We exploit such property to devise a
strategy for determineing the importance w(n) of
a node. Let n be a node of a tree t,

n
4 is the proper

sub-tree rooted at n, i.e., the tree composed of n
and all its descendants in t. We use the score of

n
4

with respect to M to assess the importance of n:

w(n) =


∑

1≤j≤|M |
αjPTK(

n
4, aj) if n ∈ a, a ∈ A∑

1≤j≤|M |
αjPTK(

n
4, bj) if n ∈ b, b ∈ B.

(2)
In order to be consistent, only the parse trees of
aj ∈ A will be used to compute w(n), if n be-
longs to the first tree of the pair (aj , bj) ∈ M .
Conversely if n belongs to the second tree of the
pair (aj , bj) only the parse trees of bi ∈ B will be
used.

Now we can proceed to prune a tree on the ba-
sis of the w(n) importance estimated by model M
for each of its nodes and a user-defined threshold.
We prune a leaf node n if −h < w(n) < h. If n
is not a leaf, then it is removed if all its children
are going to be removed. Note that the threshold
h determines the number of pruned nodes. Our al-
gorithm has a constraint: REL-tagged nodes are
never pruned, regardless of their estimated impor-
tance. This is because a REL tag indicates that a
and b share a common leaf in

n
4, which conveys

useful information, e.g., for paraphrasing (Filice
et al., 2015b).

MAP AvgR MRR P R F1 Acc

2016 IR 59.53 72.60 67.83 - - - -
KeLP 79.19 88.82 86.42 76.96 55.30 64.36 75.11

2017 IR 72.61 79.32 82.37 - - - -
KeLP 88.43 93.79 92.82 87.30 58.24 69.87 73.89

Table 1: Results on subtask A on the 2016 and
2017 official testsets. IR is the baseline system
based on the search engine results.

4 Submission and Results

We chose parameters using the 2016 official test
set as validation set, and we trained on the offi-
cial train and development sets5. In Subtask C,
the stacking features (Section 2.3) need the scores
provided by the models on subtasks A and B.
Such scores are generated with a 10-fold cross
validation. For the final submissions we used all
the 2016 data (including the testset) as training.
We used the OpenNLP pipeline for lemmatiza-
tion, POS tagging and chunking to generate the
tree representations described in Section 2.2. All
the kernel-based learning models are implemented
in KeLP (Filice et al., 2015a). For all the tasks,
we used the C-SVM learning algorithm (Chang
and Lin, 2011). The MAP@10 was the official
metric. In addition, results are also reported in
Average Recall (AvgR), Mean Reciprocal Rank
(MRR), Precision (P), Recall (R), F1, and Accu-
racy (Acc).

4.1 Subtask A

Model: The learning model operates on question-
comment pairs p = 〈q, c〉. The kernel is
PTK+(pa, pb) + LKA(pa, pb). Such kernel lin-
early combines PTK+(pa, pb) = PTK(q1, q2) +
PTK(c1, c2) (see Section 2.2) with a linear ker-
nel LKA that operates on feature vectors includ-
ing: (i) the similarity metrics between q and c
described in Section 2.1; (ii) the heuristic fea-
tures and (iii) the thread-based features discussed
in Section 2.3. PTK uses the default parameters
(Moschitti, 2006), while the best SVM regulariza-
tion parameter we estimated was C = 1. This
system is identical to the one we proposed in the
previous year.
Results: Table 1 reports the results on subtask A.
We confirmed the excellent results of 2016: the
model is very accurate and achieved the first posi-
tion among 13 systems in terms of MAP.

5We merged the official Train1, Train2 and Dev sets.
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MAP AvgR MRR P R F1 Acc

2016
IR 74.75 88.30 83.79 - - - -

KeLP 78.50 91.95 84.52 71.30 70.39 70.84 80.71
KC1 75.47 90.68 82.48 70.42 72.53 71.46 80.71

2017
IR 41.85 77.59 46.42 - - - -

KeLP 46.66 81.36 50.85 36.01 85.28 50.64 69.20
KC1 49.00 83.92 52.41 36.18 88.34 51.34 68.98

Table 2: Results on subtask B on the 2016 and
2017 official test sets. KeLP is our primary sub-
mission, while KC1 is the contrastive one. IR is
the baseline system based on the search engine re-
sults.

4.2 Subtask B

Model: The proposed system operates on
question-question pairs p = 〈o, q〉. The kernel
is PTK×(pa, pb) + LKB(pa, pb), by adopting the
kernels defined in Section 2.2. The product in the
PTK× combination acts like a logic and, as, when
comparing two pairs, we want a strict match in
which both the elements of the first pair must be
similar to the counterpart elements in the second
pair. Conversely, in subtasks A and C, the adopted
PTK+(pa, pb) applies a sort of logic or as we no-
ticed that some form of comments may be con-
sidered good (or bad ) regardless the question they
are answering. We pruned the question trees ac-
cording to the criterion described in Section 3. The
best pruning threshold we estimated on the 2016
test set was h = 0.91. The previous year model
adopted the Smoothed Partial Tree Kernel (SPTK)
(Croce et al., 2011) in place of the PTK. This year
we decided to use the PTK kernel as our prelimi-
nary experiments did not justified the usage of the
slower SPTK.

LKB is a linear kernel that operates on feature
vectors including: (i) the similarity metrics be-
tween o and q, and between o and the entire answer
thread of q, as described in Section 2.1; (ii) rank-
ing features, described in Section 2.3. With re-
spect to the previous year challenge we did not
include some features derived from subtask A,
because in subsequent experiments they did not
demonstrate a significant impact.

The best SVM regularization parameter esti-
mated during the tuning stage is C = 1.

We made an additional submission in which the
pruning in not applied.

Results: Table 2 shows the results on subtask B.
On the official test set, our primary submission
achieved the third position w.r.t. MAP among 13
systems. Differently from what observed in the

Figure 2: 10 fold cross validation results on the
official 2017 test set with different pruning thresh-
olds on subtask B.

tuning stage, on the official test set the contrastive
system achieves the highest MAP and would have
ranked first in the challenge.

In general, the difference between the system
accuracy obtained in 2016 and 2017 suggests that
the two test sets are rather different. To verify this
hypothesis, we performed a 10-fold cross valida-
tion using only the data from 2017 test set. We
kept the same pruning strategy and weights com-
puted on the 2016 training set that we applied to
the entire test set of 2017 for our official submis-
sion. We evaluated different pruning thresholds.
Figure 2 reports the MAP averaged over the re-
sults of a 10 fold cross validation on the official
2017 test set (the 2016 dataset is not used at all).

The results show that (i) our best system with or
without pruning is less accurate than the submitted
results, i.e., producing an MAP of 46.29: this is
reasonable since the model uses less training data.
(ii) our pruning can improve our best system from
46.29 to 47.10 MAP.

Thus, it would seem that the difference between
2016 and 2017 dataset plays an important role for
the pruning approach as removing some subtrees
makes the TK approach more effective but proba-
bly also more specific to the data used for training
the model. Another possible explanation is that
it is easier to improve a weaker model, using less
data. Finding out the properties of tree pruning is
surely an interesting research line we would like
to pursue in the future.
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MAP AvgR MRR P R F1 Acc

2016 IR 40.36 45.97 45.83 - - - -
KeLP 55.91 59.57 60.99 52.16 22.17 31.12 90.83

2017 IR 9.18 21.72 10.11 - - - -
KeLP 14.35 30.74 16.07 6.48 89.02 12.07 63.75

Table 3: Results on subtask C on the 2016 and
2017 official test sets. KeLP is our primary sub-
mission, while IR is the baseline system based on
the search engine results.

4.3 Subtask C

Model: The learning model operates
on the triplet, 〈o, q, c〉, using the ker-
nel, PTK+(pa, pb) + LKC(ta, tb), where
PTK+(pa, pb) = PTK(o1, o2) + PTK(c1, c2)
(see Section 2.2) and LKC is a linear kernel
operating on feature vectors, which include:
(i) the similarity metrics between o and c, between
o and q, and between o and the entire thread of
q, as described in Section 2.1; (ii) the heuristic
features, (iii) the thread-based features, (iv) the
ranking features, and (v) the features derived
from the scores of subtasks A and B, described in
Section 2.3. PTK uses the default parameters. The
subtask training data is rather imbalanced, as the
number of negative examples is about 10 times the
positive ones. We took this into account by setting
the regularization parameter for the positive class,
Cp = #negatives

#positivesC, as in (Morik et al., 1999). The
best SVM regularization parameter estimated
during the tuning stage is C = 5. The system is
identical to the one proposed the previous year.

Results: Table 3 shows the results for subtask C.
Our primary submission achieved the third high-
est MAP among 5 systems. The large difference
among the 2016 and 2017 MAP is mainly due to
the much lower presence of relevant examples in
the 2017 test set, indeed, more than 97% of in-
stances are irrelevant.
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