@inproceedings{vechtomova-2017-uwaterloo,
title = "{UW}aterloo at {S}em{E}val-2017 Task 7: Locating the Pun Using Syntactic Characteristics and Corpus-based Metrics",
author = "Vechtomova, Olga",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2071/",
doi = "10.18653/v1/S17-2071",
pages = "421--425",
abstract = "The paper presents a system for locating a pun word. The developed method calculates a score for each word in a pun, using a number of components, including its Inverse Document Frequency (IDF), Normalized Pointwise Mutual Information (NPMI) with other words in the pun text, its position in the text, part-of-speech and some syntactic features. The method achieved the best performance in the Heterographic category and the second best in the Homographic. Further analysis showed that IDF is the most useful characteristic, whereas the count of words with which the given word has high NPMI has a negative effect on performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vechtomova-2017-uwaterloo">
<titleInfo>
<title>UWaterloo at SemEval-2017 Task 7: Locating the Pun Using Syntactic Characteristics and Corpus-based Metrics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Vechtomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents a system for locating a pun word. The developed method calculates a score for each word in a pun, using a number of components, including its Inverse Document Frequency (IDF), Normalized Pointwise Mutual Information (NPMI) with other words in the pun text, its position in the text, part-of-speech and some syntactic features. The method achieved the best performance in the Heterographic category and the second best in the Homographic. Further analysis showed that IDF is the most useful characteristic, whereas the count of words with which the given word has high NPMI has a negative effect on performance.</abstract>
<identifier type="citekey">vechtomova-2017-uwaterloo</identifier>
<identifier type="doi">10.18653/v1/S17-2071</identifier>
<location>
<url>https://aclanthology.org/S17-2071/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>421</start>
<end>425</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UWaterloo at SemEval-2017 Task 7: Locating the Pun Using Syntactic Characteristics and Corpus-based Metrics
%A Vechtomova, Olga
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F vechtomova-2017-uwaterloo
%X The paper presents a system for locating a pun word. The developed method calculates a score for each word in a pun, using a number of components, including its Inverse Document Frequency (IDF), Normalized Pointwise Mutual Information (NPMI) with other words in the pun text, its position in the text, part-of-speech and some syntactic features. The method achieved the best performance in the Heterographic category and the second best in the Homographic. Further analysis showed that IDF is the most useful characteristic, whereas the count of words with which the given word has high NPMI has a negative effect on performance.
%R 10.18653/v1/S17-2071
%U https://aclanthology.org/S17-2071/
%U https://doi.org/10.18653/v1/S17-2071
%P 421-425
Markdown (Informal)
[UWaterloo at SemEval-2017 Task 7: Locating the Pun Using Syntactic Characteristics and Corpus-based Metrics](https://aclanthology.org/S17-2071/) (Vechtomova, SemEval 2017)
ACL