
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 421–425,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

UWaterloo at SemEval-2017 Task 7: Locating the Pun Using Syntactic
Characteristics and Corpus-based Metrics

Olga Vechtomova
University of Waterloo
Waterloo, ON, Canada

ovechtom@uwaterloo.ca

Abstract

The paper presents a system for locat-
ing a pun word. The developed method
calculates a score for each word in a
pun, using a number of components, in-
cluding its Inverse Document Frequency
(IDF), Normalized Pointwise Mutual In-
formation (NPMI) with other words in the
pun text, its position in the text, part-of-
speech and some syntactic features. The
method achieved the best performance in
the Heterographic category and the second
best in the Homographic. Further analysis
showed that IDF is the most useful charac-
teristic, whereas the count of words with
which the given word has high NPMI has
a negative effect on performance.

1 Introduction

The pun is defined as “A joke exploiting the dif-
ferent possible meanings of a word or the fact that
there are words which sound alike but have dif-
ferent meanings” (Oxford University Press, 2017).
When a pun is a spoken utterance, two types of
puns are commonly distinguished: homophonic
puns, which exploit different meanings of the
same word, and heterophonic puns, in which one
or more words have similar but not identical pro-
nunciations to some other word or phrase that
is alluded to in the pun. The SemEval Task 7
(Miller et al., 2017) focused on the identification
of puns as written texts, rather than spoken ut-
terances, and hence distinguished between homo-
graphic and heterographic puns.

We participated in Subtask 2: Pun location,
which required participating systems to identify
which word is the pun. Only the cases which con-
tain exactly one pun word were given to the partic-
ipants in each of the two categories: homographic

and heterographic puns.
Our approach to identifying the pun word is to

rank words in the pun text by a score calculated as
the sum of values of eleven features. The feature
values are calculated using a combination of cor-
pus statistics and rule-based methods. The word
with the highest score is considered to be the pun
word. The method is described in detail in Sec-
tion 2. In developing the word ranking method,
we were guided by a number of intuitions, out-
lined below.

The punchline in a pun or a joke is almost al-
ways close to the end, since it is at the end that the
reader is expected to uncover the second hidden
(non-obvious) meaning of the pun. This intuition
is consistent with Ruskin’s Script-based Semantic
Theory of humour (Ruskin, 1985). The system
therefore only assigns scores to words located in
the second half of the pun text.

What makes a homographic pun humorous is
the simultaneous perception by a reader of two
conflicting meanings of the same pun word. The
pun author can achieve this by using words that
are associated with (or evoke) different senses of
the pun word. For example in “Why don’t pro-
grammers like nature? It has too many bugs” The
word “programmers” is associated with one sense
of “bugs”, but the word “nature” is associated with
another sense. We operationalize this intuition
by calculating Normalized Pointwise Mutual In-
formation (NPMI) between pairs of words to find
words that are semantically associated with each
other.

Heterographic puns often contain one or more
words that are associated with either the pun word
itself or its similarly sounding word. In the case
of “What did the grape say when it got stepped
on? Nothing - but it let out a little whine.” The
pun word “whine” has a similarly sounding word
“wine”, which is associated with the preceding

421



word “grape”. To operationalize this intuition,
we used a dictionary of similarly sounding words.
If for a given word in the pun text there exists
a similarly sounding word (or words), we calcu-
late NPMI between it and each other word in the
text. We also calculate NPMI between the origi-
nal word as it appears in the pun and each other
word. We hypothesize that if a similarly sounding
word is more strongly associated (i.e. has higher
NPMI) with other words in the text, compared to
the original word, it is likely to be the pun word,
and receives an additional weight.

The pun word has to stand out from the rest of
the text and attract the reader’s attention, as it is
the realization of the joke’s punchline. One possi-
ble reason why it stands out is because it is a more
rare word compared to the surrounding words. In-
verse Document Frequency (IDF) is a measure of
how rare the word is in a corpus. The less fre-
quent the word is in a corpus, the higher is its IDF.
We hypothesize that a word, which has the highest
IDF in the second half of the text is more likely to
be the pun word than words with lower IDFs. We
thus assign an additional weight to such a word.
Furthermore, only nouns, adjectives, adverbs and
verbs are assigned scores by our system.

Sometimes, a pun word is a made up word,
e.g. “velcrows” in “There is a special species of
bird that is really good at holding stuff together.
They are called velcrows.” We assign an addi-
tional weight to words that have zero frequency
in a large corpus.

A number of intuitions were guided by the syn-
tactic structure of the text. Thus, we hypothesize
that if the pun text consists of two sentences, the
pun word is located in the second sentence, as it
is most likely to contain the punchline. Therefore,
all words in the second sentence receive an addi-
tional weight. In a similar vein, if the text contains
a comma or the words “then” or “but”, all words
following them receive additional weights. These
clues can signal a pause, a shift in the narrative or
a juxtaposition, which all precede the punchline.

2 Methodology

Each test case is tokenized and POS-tagged us-
ing Stanford CoreNLP toolkit (Manning et al.,
2014). For each word w that is either a noun,
an adjective, an adverb or a verb (henceforth re-
ferred to as content words), the IDF is calculated
as IDFw = log(N/nw), where nw is the number

of documents in the corpus containing w, and N is
the total number of documents in the corpus. For
calculating IDF we used ClueWeb09 TREC Cat-
egory B corpus (Language Technologies Institute,
2009), consisting of 50 million English webpages.
To obtain term frequencies, the corpus was in-
dexed and queried using the Wumpus Search En-
gine (Buettcher, 2007).

For each content word w, the system also cal-
culates pairwise Normalized Pointwise Mutual In-
formation (NPMI) (Bouma, 2009) with each other
content word present in the text.

NPMI(x, y) =
(

ln
p(x, y)

p(x)p(y)

) /
− ln p(x, y)

(1)

where p(x, y) is calculated as f(x, y)/N , in
which f(x, y) is the number of times y occurs
within the span of s words before or after x in
the corpus, and N is the number of word occur-
rences (tokens) in the corpus; p(x) = f(x)/N ;
p(y) = f(y)/N . The co-occurrence span size s
was set in our system to 20.

In some puns, the pun word may be hyphen-
ated, where the string after the hyphen can be
associated with other content words in the sen-
tence, for example, in “The one who invented the
door knocker got a No-bell prize.” “bell” is as-
sociated with “knocker”. To account for these
cases, we check if a word has a hyphen, ex-
tract its second half, lemmatize it, and calculate
its NPMI with all other content words present
in the text. Given a word pair (x, y), where x
is hyphenated and z is the string after the hy-
phen, calculate NPMI(x, y) and NPMI(z, y).
If NPMI(z, y) > NPMI(x, y), then assign the
NPMI(z, y) value to NPMI(x, y). We did not
experiment with calculating NPMI for the string
before the hyphen.

In heterographic puns, a word that is spelled dif-
ferently, but has similar pronunciation to a word
present in the pun, may be associated with other
words in the text. A list of 2167 similarly sound-
ing words was compiled from two publicly avail-
able resources 1,2. For each content word, the sys-
tem checks if it has at least one similarly sound-
ing word in the list, and if so, creates a set of

1http://www.zyvra.org/lafarr/hom.htm
2http://www.singularis.ltd.uk/bifroest/misc/homophones-

list.html

422



f1 Number of content words in the text of the pun that have a lower NPMI with the word x than
with any of its similarly sounding words.

f2 Number of content words in the text of the pun that have a lower NPMI with the word x than
with its substring following the hyphen (for hyphenated words).

f3 1 - word x has zero frequency in the ClueWeb09 corpus.
f4 1 - word x has a similarly sounding word.
f5 Number of content words y for which NPMI(x, y) > m.
f6 1 - word x is located in the third quarter of the text; 2 - in the fourth quarter.
f7 2 - word x is located in the second sentence.
f8 1- word x is located after the earliest occurrence of a comma.
f9 1- word x is located after the earliest occurrence of “then”.
f10 1- word x is located after the earliest occurrence of “but”.
f11 1 - word x has the highest IDF in the second half of the text.

Table 1: Components of the score calculated for every content word x in the text of the pun.

Method Precision (rank) Recall (rank) F1 score (rank) Coverage (rank)
Heterographic 0.7973 (1) 0.7954 (1) 0.7964 (1) 0.9976(2)
Homographic (submission 1) 0.6526 (2) 0.6521 (2) 0.6523 (2) 0.9994 (2)
Homographic (submission 2) 0.6519 0.6503 0.6511 0.9975

Table 2: Submission results

similarly sounding words H , including the orig-
inal word. For each h ∈ H it calculates its NPMI
with each other content word in the text. Given a
word pair (x, y), where x ∈ H , NPMI(x, y) =
max
h∈H

NPMI(h, y). For each content word x in

the pun text the system counts the number of con-
tent words y for which NPMI(x, y) > m (fea-
ture f5 in Table 1), where m is set to 0.3. The
system also counts the number of content words
y, which have lower NPMI with the original word
x, than with any of its similarly sounding words
(feature f1).

For every word in the second half of the text,
the score is calculated as the sum of values of the
features presented in Table 1. The word that has
the highest score is selected to be the pun word. If
there are ties, the word closer to the end is selected.

3 Results

We made one submission in the Heterographic cat-
egory and two in the Homographic category (Ta-
ble 2). Our submission in the Heterographic cat-
egory achieved the best result among all submis-
sions, exceeding the second-best one in F1 score
by 16%. Our best submission in the Homographic
category achieved the second best result, with F1
being only 0.02% lower than that of the best sub-
mission. Our submission in the Heterographic cat-
egory and Submission 1 in the Homographic cate-
gory use all features listed in Table 1. The system
used to generate submission 2 in the Homographic
category does not use the list of similarly sounding
words, hence does not use features f1 and f4.

4 Extensions

After the submission, we noticed that puns may
consist of more than two sentences, therefore, we
modified feature f7 to assign one point to the last
sentence, instead of the second. This resulted
in slight improvement (“Submitted (corrected)” in
Table 3).

Following the submission we developed another
component (f12) to the system presented in Sec-
tion 2. We were guided by the intuition that in het-
erographic puns, word x may have the strongest
association with word y, however its similarly
sounding word h may have the strongest associ-
ation with a different word z, but the two words
z and y are not associated. For example, in “A
chicken farmer’s favorite car is a coupe.” the
word “coupe” (x) is strongly associated with “car”
(z), however its similarly sounding word “coop”
is strongly associated with “chicken” (y). The
words “chicken” and “car” however do not have
a strong association. We operationalize it as fol-
lows. When a word x has a similarly sound-
ing word h, the system finds a word z among all
content words W in text with max

z∈W
NPMI(h, z).

Similarly, for the word x the system finds a
word y among all content words W in text with
max
y∈W

NPMI(x, y). If NPMI(z, y) < t the sys-

tem adds one point to the score of the word x. Dif-
ferent t values (0.1, 0.2, 0.3, 0.4, 0.5) were evalu-
ated, with t = 0.2 showing the best results. The
addition of this new feature (row “f12 added” in
Table 3 showed some improvement.

423



Method Effect on performance Precision Recall F1 score Coverage
Submitted (corrected) 0.7981 0.7962 0.7971 0.9976
f12 added + 0.8052 0.8033 0.8043 0.9976
f13 added + 0.8368 0.8348 0.8358 0.9976
f1 removed + 0.7744 0.7726 0.7735 0.9976
f2 removed 0 0.7981 0.7962 0.7971 0.9976
f3 removed 0 0.7981 0.7962 0.7971 0.9976
f4 removed + 0.7926 0.7907 0.7916 0.9976
f5 removed – 0.8407 0.8387 0.8397 0.9976
f6 removed + 0.7926 0.7907 0.7916 0.9976
f7 removed + 0.795 0.7931 0.794 0.9976
f8 removed + 0.7926 0.7907 0.7916 0.9976
f9 removed – 0.7989 0.797 0.7979 0.9976
f10 removed + 0.7965 0.7946 0.7955 0.9976
f11 removed + 0.6025 0.6011 0.6018 0.9976
f1+f4+f6+f7+f8+f10+f11+f12+f13 0.8502 0.8482 0.8492 0.9976

Table 3: Post-submission results with added/removed features (Heterographic puns)

Next, we evaluated component f13, which adds
one point to the word’s score if its IDF is above
threshold i. The i values evaluated were 2, 3, 4 and
5, with i = 3 showing the best results. Addition
of this feature (“f13 added” in Table 3) led to an
improvement of 4.9% over the submitted result.

In order to determine which features contributed
positively or negatively to performance, we re-
moved each component one by one (Table 3). The
second column in Table 3 shows the effect that the
given feature has on the overall performance, e.g.
if the removal of the feature causes drop in per-
formance, the feature has a positive effect, indi-
cated by a “+” sign. The component that has the
strongest positive contribution to the system’s per-
formance is f11, which assigns one point to the
word with the highest IDF in the second half of the
text. The component that has the strongest nega-
tive impact is f5 (number of content words with
which the given word has high NPMI). The num-
ber of words in the sentence that are more strongly
related to the word’s similarly sounding word (f1)
is also a useful component. Based on this analy-
sis, we modified the system to use only the pos-
itively contributing features (last row in Table 3,
which outperformed our submitted method in all
measures, achieving F1 score of 0.8492 (6.6% im-
provement).

5 Conclusions and future work

The paper described a method for identifying the
location of a pun word using corpus-based char-
acteristics of a word, such as its IDF and NPMI
with other words in the pun text, as well its posi-
tion in the text, part-of-speech and some syntactic
features, such as presence of comma and words

“but” and “then” prior to the given word’s occur-
rence. The method achieved the best performance
in the Heterographic category and the second best
in the Homographic. Further analysis showed that
IDF is the most useful characteristic, whereas the
count of words with which the given word has high
NPMI has a negative effect on performance.

Possible future improvements to the presented
system are proposed below. In the Homographic
pun category, some puns make use of idiomatic
expressions. The joke exploits the dual interpre-
tation of an idiomatic expression as, on the one
hand, a combination of the literal meanings of its
words, and on the other hand, its idiomatic mean-
ing. For example, in “Luggage salespeople have
to make a good case for you to buy.” it would be
useful if the system recognized the phrase “make
a good case” as an idiomatic expression.

We used a rather limited list of similarly sound-
ing words. A better way to find similarly sounding
words and phrases would be useful, especially in
those cases where a combination of words is pro-
nounced similarly to one word, e.g. “There was a
big paddle sale at the boat store. It was quite an
oar deal.”

Currently, the feature weights are selected em-
pirically. A possible avenue for future work is to
develop an automatic method for selecting the best
feature weights.

References
Gerlof Bouma. 2009. Normalized (pointwise) mutual

information in collocation extraction. In Proceed-
ings of the Biennial GSCL Conference.

Stephan Buettcher. 2007. The Wumpus Infor-

424



mation Retrieval system. http://www.
wumpus-search.org/docs/wumpus_
tutorial.pdf. Last accessed: 2017-02-15.

CMU Language Technologies Institute. 2009. The
ClueWeb09 dataset. http://lemurproject.
org/clueweb09/. Last accessed: 2017-02-15.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL (System Demon-
strations). pages 55–60.

Tristan Miller, Christian F. Hempelmann, and Iryna
Gurevych. 2017. SemEval-2017 Task 7: Detec-
tion and interpretation of English puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017).

Oxford University Press. 2017. Oxford dictio-
nary. https://en.oxforddictionaries.
com/definition/pun. Last accessed: 2017-
02-17.

Victor Ruskin. 1985. Semantic Mechanisms of Humor.
D. Reidel Publishing Company.

425


