@inproceedings{lampouras-vlachos-2017-sheffield,
title = "{S}heffield at {S}em{E}val-2017 Task 9: Transition-based language generation from {AMR}.",
author = "Lampouras, Gerasimos and
Vlachos, Andreas",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2096",
doi = "10.18653/v1/S17-2096",
pages = "586--591",
abstract = "This paper describes the submission by the University of Sheffield to the SemEval 2017 Abstract Meaning Representation Parsing and Generation task (SemEval 2017 Task 9, Subtask 2). We cast language generation from AMR as a sequence of actions (e.g., insert/remove/rename edges and nodes) that progressively transform the AMR graph into a dependency parse tree. This transition-based approach relies on the fact that an AMR graph can be considered structurally similar to a dependency tree, with a focus on content rather than function words. An added benefit to this approach is the greater amount of data we can take advantage of to train the parse-to-text linearizer. Our submitted run on the test data achieved a BLEU score of 3.32 and a Trueskill score of -22.04 on automatic and human evaluation respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lampouras-vlachos-2017-sheffield">
<titleInfo>
<title>Sheffield at SemEval-2017 Task 9: Transition-based language generation from AMR.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Lampouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the submission by the University of Sheffield to the SemEval 2017 Abstract Meaning Representation Parsing and Generation task (SemEval 2017 Task 9, Subtask 2). We cast language generation from AMR as a sequence of actions (e.g., insert/remove/rename edges and nodes) that progressively transform the AMR graph into a dependency parse tree. This transition-based approach relies on the fact that an AMR graph can be considered structurally similar to a dependency tree, with a focus on content rather than function words. An added benefit to this approach is the greater amount of data we can take advantage of to train the parse-to-text linearizer. Our submitted run on the test data achieved a BLEU score of 3.32 and a Trueskill score of -22.04 on automatic and human evaluation respectively.</abstract>
<identifier type="citekey">lampouras-vlachos-2017-sheffield</identifier>
<identifier type="doi">10.18653/v1/S17-2096</identifier>
<location>
<url>https://aclanthology.org/S17-2096</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>586</start>
<end>591</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sheffield at SemEval-2017 Task 9: Transition-based language generation from AMR.
%A Lampouras, Gerasimos
%A Vlachos, Andreas
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F lampouras-vlachos-2017-sheffield
%X This paper describes the submission by the University of Sheffield to the SemEval 2017 Abstract Meaning Representation Parsing and Generation task (SemEval 2017 Task 9, Subtask 2). We cast language generation from AMR as a sequence of actions (e.g., insert/remove/rename edges and nodes) that progressively transform the AMR graph into a dependency parse tree. This transition-based approach relies on the fact that an AMR graph can be considered structurally similar to a dependency tree, with a focus on content rather than function words. An added benefit to this approach is the greater amount of data we can take advantage of to train the parse-to-text linearizer. Our submitted run on the test data achieved a BLEU score of 3.32 and a Trueskill score of -22.04 on automatic and human evaluation respectively.
%R 10.18653/v1/S17-2096
%U https://aclanthology.org/S17-2096
%U https://doi.org/10.18653/v1/S17-2096
%P 586-591
Markdown (Informal)
[Sheffield at SemEval-2017 Task 9: Transition-based language generation from AMR.](https://aclanthology.org/S17-2096) (Lampouras & Vlachos, SemEval 2017)
ACL