@inproceedings{laskari-sanampudi-2017-twina,
title = "{TWINA} at {S}em{E}val-2017 Task 4: {T}witter Sentiment Analysis with Ensemble Gradient Boost Tree Classifier",
author = "Laskari, Naveen Kumar and
Sanampudi, Suresh Kumar",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2109",
doi = "10.18653/v1/S17-2109",
pages = "659--663",
abstract = "This paper describes the TWINA system, with which we participated in SemEval-2017 Task 4B (Topic Based Message Polarity Classification {--} Two point scale) and 4D (two-point scale Tweet quantification). We implemented ensemble based Gradient Boost Trees classification method for both the tasks. Our system could perform well for the task 4D and ranked 13th among 15 teams, for the task 4B our model ranked 23rd position.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="laskari-sanampudi-2017-twina">
<titleInfo>
<title>TWINA at SemEval-2017 Task 4: Twitter Sentiment Analysis with Ensemble Gradient Boost Tree Classifier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Naveen</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Laskari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suresh</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Sanampudi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the TWINA system, with which we participated in SemEval-2017 Task 4B (Topic Based Message Polarity Classification – Two point scale) and 4D (two-point scale Tweet quantification). We implemented ensemble based Gradient Boost Trees classification method for both the tasks. Our system could perform well for the task 4D and ranked 13th among 15 teams, for the task 4B our model ranked 23rd position.</abstract>
<identifier type="citekey">laskari-sanampudi-2017-twina</identifier>
<identifier type="doi">10.18653/v1/S17-2109</identifier>
<location>
<url>https://aclanthology.org/S17-2109</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>659</start>
<end>663</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TWINA at SemEval-2017 Task 4: Twitter Sentiment Analysis with Ensemble Gradient Boost Tree Classifier
%A Laskari, Naveen Kumar
%A Sanampudi, Suresh Kumar
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F laskari-sanampudi-2017-twina
%X This paper describes the TWINA system, with which we participated in SemEval-2017 Task 4B (Topic Based Message Polarity Classification – Two point scale) and 4D (two-point scale Tweet quantification). We implemented ensemble based Gradient Boost Trees classification method for both the tasks. Our system could perform well for the task 4D and ranked 13th among 15 teams, for the task 4B our model ranked 23rd position.
%R 10.18653/v1/S17-2109
%U https://aclanthology.org/S17-2109
%U https://doi.org/10.18653/v1/S17-2109
%P 659-663
Markdown (Informal)
[TWINA at SemEval-2017 Task 4: Twitter Sentiment Analysis with Ensemble Gradient Boost Tree Classifier](https://aclanthology.org/S17-2109) (Laskari & Sanampudi, SemEval 2017)
ACL