@inproceedings{mulki-etal-2017-tw,
title = "Tw-{S}t{AR} at {S}em{E}val-2017 Task 4: Sentiment Classification of {A}rabic Tweets",
author = "Mulki, Hala and
Haddad, Hatem and
Gridach, Mourad and
Babaoglu, Ismail",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2110/",
doi = "10.18653/v1/S17-2110",
pages = "664--669",
abstract = "In this paper, we present our contribution in SemEval 2017 international workshop. We have tackled task 4 entitled {\textquotedblleft}Sentiment analysis in Twitter{\textquotedblright}, specifically subtask 4A-Arabic. We propose two Arabic sentiment classification models implemented using supervised and unsupervised learning strategies. In both models, Arabic tweets were preprocessed first then various schemes of bag-of-N-grams were extracted to be used as features. The final submission was selected upon the best performance achieved by the supervised learning-based model. However, the results obtained by the unsupervised learning-based model are considered promising and evolvable if more rich lexica are adopted in further work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mulki-etal-2017-tw">
<titleInfo>
<title>Tw-StAR at SemEval-2017 Task 4: Sentiment Classification of Arabic Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hala</namePart>
<namePart type="family">Mulki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hatem</namePart>
<namePart type="family">Haddad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mourad</namePart>
<namePart type="family">Gridach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ismail</namePart>
<namePart type="family">Babaoglu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present our contribution in SemEval 2017 international workshop. We have tackled task 4 entitled “Sentiment analysis in Twitter”, specifically subtask 4A-Arabic. We propose two Arabic sentiment classification models implemented using supervised and unsupervised learning strategies. In both models, Arabic tweets were preprocessed first then various schemes of bag-of-N-grams were extracted to be used as features. The final submission was selected upon the best performance achieved by the supervised learning-based model. However, the results obtained by the unsupervised learning-based model are considered promising and evolvable if more rich lexica are adopted in further work.</abstract>
<identifier type="citekey">mulki-etal-2017-tw</identifier>
<identifier type="doi">10.18653/v1/S17-2110</identifier>
<location>
<url>https://aclanthology.org/S17-2110/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>664</start>
<end>669</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tw-StAR at SemEval-2017 Task 4: Sentiment Classification of Arabic Tweets
%A Mulki, Hala
%A Haddad, Hatem
%A Gridach, Mourad
%A Babaoglu, Ismail
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F mulki-etal-2017-tw
%X In this paper, we present our contribution in SemEval 2017 international workshop. We have tackled task 4 entitled “Sentiment analysis in Twitter”, specifically subtask 4A-Arabic. We propose two Arabic sentiment classification models implemented using supervised and unsupervised learning strategies. In both models, Arabic tweets were preprocessed first then various schemes of bag-of-N-grams were extracted to be used as features. The final submission was selected upon the best performance achieved by the supervised learning-based model. However, the results obtained by the unsupervised learning-based model are considered promising and evolvable if more rich lexica are adopted in further work.
%R 10.18653/v1/S17-2110
%U https://aclanthology.org/S17-2110/
%U https://doi.org/10.18653/v1/S17-2110
%P 664-669
Markdown (Informal)
[Tw-StAR at SemEval-2017 Task 4: Sentiment Classification of Arabic Tweets](https://aclanthology.org/S17-2110/) (Mulki et al., SemEval 2017)
ACL