@inproceedings{onyibe-habash-2017-omam,
    title = "{OMAM} at {S}em{E}val-2017 Task 4: {E}nglish Sentiment Analysis with Conditional Random Fields",
    author = "Onyibe, Chukwuyem  and
      Habash, Nizar",
    editor = "Bethard, Steven  and
      Carpuat, Marine  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      Cer, Daniel  and
      Jurgens, David",
    booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S17-2111/",
    doi = "10.18653/v1/S17-2111",
    pages = "670--674",
    abstract = "We describe a supervised system that uses optimized Condition Random Fields and lexical features to predict the sentiment of a tweet. The system was submitted to the English version of all subtasks in SemEval-2017 Task 4."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="onyibe-habash-2017-omam">
    <titleInfo>
        <title>OMAM at SemEval-2017 Task 4: English Sentiment Analysis with Conditional Random Fields</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Chukwuyem</namePart>
        <namePart type="family">Onyibe</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nizar</namePart>
        <namePart type="family">Habash</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Cer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Jurgens</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We describe a supervised system that uses optimized Condition Random Fields and lexical features to predict the sentiment of a tweet. The system was submitted to the English version of all subtasks in SemEval-2017 Task 4.</abstract>
    <identifier type="citekey">onyibe-habash-2017-omam</identifier>
    <identifier type="doi">10.18653/v1/S17-2111</identifier>
    <location>
        <url>https://aclanthology.org/S17-2111/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>670</start>
            <end>674</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OMAM at SemEval-2017 Task 4: English Sentiment Analysis with Conditional Random Fields
%A Onyibe, Chukwuyem
%A Habash, Nizar
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F onyibe-habash-2017-omam
%X We describe a supervised system that uses optimized Condition Random Fields and lexical features to predict the sentiment of a tweet. The system was submitted to the English version of all subtasks in SemEval-2017 Task 4.
%R 10.18653/v1/S17-2111
%U https://aclanthology.org/S17-2111/
%U https://doi.org/10.18653/v1/S17-2111
%P 670-674
Markdown (Informal)
[OMAM at SemEval-2017 Task 4: English Sentiment Analysis with Conditional Random Fields](https://aclanthology.org/S17-2111/) (Onyibe & Habash, SemEval 2017)
ACL