@inproceedings{hamdan-2017-senti17,
title = "{S}enti17 at {S}em{E}val-2017 Task 4: Ten Convolutional Neural Network Voters for Tweet Polarity Classification",
author = "Hamdan, Hussam",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2116/",
doi = "10.18653/v1/S17-2116",
pages = "700--703",
abstract = "This paper presents Senti17 system which uses ten convolutional neural networks (ConvNet) to assign a sentiment label to a tweet. The network consists of a convolutional layer followed by a fully-connected layer and a Softmax on top. Ten instances of this network are initialized with the same word embeddings as inputs but with different initializations for the network weights. We combine the results of all instances by selecting the sentiment label given by the majority of the ten voters. This system is ranked fourth in SemEval-2017 Task4 over 38 systems with 67.4{\%} average recall."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hamdan-2017-senti17">
<titleInfo>
<title>Senti17 at SemEval-2017 Task 4: Ten Convolutional Neural Network Voters for Tweet Polarity Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hussam</namePart>
<namePart type="family">Hamdan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents Senti17 system which uses ten convolutional neural networks (ConvNet) to assign a sentiment label to a tweet. The network consists of a convolutional layer followed by a fully-connected layer and a Softmax on top. Ten instances of this network are initialized with the same word embeddings as inputs but with different initializations for the network weights. We combine the results of all instances by selecting the sentiment label given by the majority of the ten voters. This system is ranked fourth in SemEval-2017 Task4 over 38 systems with 67.4% average recall.</abstract>
<identifier type="citekey">hamdan-2017-senti17</identifier>
<identifier type="doi">10.18653/v1/S17-2116</identifier>
<location>
<url>https://aclanthology.org/S17-2116/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>700</start>
<end>703</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Senti17 at SemEval-2017 Task 4: Ten Convolutional Neural Network Voters for Tweet Polarity Classification
%A Hamdan, Hussam
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F hamdan-2017-senti17
%X This paper presents Senti17 system which uses ten convolutional neural networks (ConvNet) to assign a sentiment label to a tweet. The network consists of a convolutional layer followed by a fully-connected layer and a Softmax on top. Ten instances of this network are initialized with the same word embeddings as inputs but with different initializations for the network weights. We combine the results of all instances by selecting the sentiment label given by the majority of the ten voters. This system is ranked fourth in SemEval-2017 Task4 over 38 systems with 67.4% average recall.
%R 10.18653/v1/S17-2116
%U https://aclanthology.org/S17-2116/
%U https://doi.org/10.18653/v1/S17-2116
%P 700-703
Markdown (Informal)
[Senti17 at SemEval-2017 Task 4: Ten Convolutional Neural Network Voters for Tweet Polarity Classification](https://aclanthology.org/S17-2116/) (Hamdan, SemEval 2017)
ACL