@inproceedings{yoon-etal-2017-adullam,
title = "Adullam at {S}em{E}val-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated Convolutional Neural Networks with Attention",
author = "Yoon, Joosung and
Lyu, Kigon and
Kim, Hyeoncheol",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2123/",
doi = "10.18653/v1/S17-2123",
pages = "732--736",
abstract = "We propose a sentiment analyzer for the prediction of document-level sentiments of English micro-blog messages from Twitter. The proposed method is based on lexicon integrated convolutional neural networks with attention (LCA). Its performance was evaluated using the datasets provided by SemEval competition (Task 4). The proposed sentiment analyzer obtained an average F1 of 55.2{\%}, an average recall of 58.9{\%} and an accuracy of 61.4{\%}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yoon-etal-2017-adullam">
<titleInfo>
<title>Adullam at SemEval-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated Convolutional Neural Networks with Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joosung</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kigon</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyeoncheol</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a sentiment analyzer for the prediction of document-level sentiments of English micro-blog messages from Twitter. The proposed method is based on lexicon integrated convolutional neural networks with attention (LCA). Its performance was evaluated using the datasets provided by SemEval competition (Task 4). The proposed sentiment analyzer obtained an average F1 of 55.2%, an average recall of 58.9% and an accuracy of 61.4%.</abstract>
<identifier type="citekey">yoon-etal-2017-adullam</identifier>
<identifier type="doi">10.18653/v1/S17-2123</identifier>
<location>
<url>https://aclanthology.org/S17-2123/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>732</start>
<end>736</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adullam at SemEval-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated Convolutional Neural Networks with Attention
%A Yoon, Joosung
%A Lyu, Kigon
%A Kim, Hyeoncheol
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F yoon-etal-2017-adullam
%X We propose a sentiment analyzer for the prediction of document-level sentiments of English micro-blog messages from Twitter. The proposed method is based on lexicon integrated convolutional neural networks with attention (LCA). Its performance was evaluated using the datasets provided by SemEval competition (Task 4). The proposed sentiment analyzer obtained an average F1 of 55.2%, an average recall of 58.9% and an accuracy of 61.4%.
%R 10.18653/v1/S17-2123
%U https://aclanthology.org/S17-2123/
%U https://doi.org/10.18653/v1/S17-2123
%P 732-736
Markdown (Informal)
[Adullam at SemEval-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated Convolutional Neural Networks with Attention](https://aclanthology.org/S17-2123/) (Yoon et al., SemEval 2017)
ACL