@inproceedings{li-etal-2017-funsentiment,
    title = "fun{S}entiment at {S}em{E}val-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts",
    author = "Li, Quanzhi  and
      Nourbakhsh, Armineh  and
      Liu, Xiaomo  and
      Fang, Rui  and
      Shah, Sameena",
    editor = "Bethard, Steven  and
      Carpuat, Marine  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      Cer, Daniel  and
      Jurgens, David",
    booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S17-2125/",
    doi = "10.18653/v1/S17-2125",
    pages = "741--746",
    abstract = "This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We use two types of word embeddings in our classifiers: the general word embeddings learned from 200 million tweets, and sentiment-specific word embeddings learned from 10 million tweets using distance supervision. We also incorporate a text feature model in our algorithm. This model produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. We participated in four subtasks (B, C, D {\&} E for English), all of which are about topic-based message polarity classification. Our team is ranked {\#}6 in subtask B, {\#}3 by MAEu and {\#}9 by MAEm in subtask C, {\#}3 using RAE and {\#}6 using KLD in subtask D, and {\#}3 in subtask E."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2017-funsentiment">
    <titleInfo>
        <title>funSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Quanzhi</namePart>
        <namePart type="family">Li</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Armineh</namePart>
        <namePart type="family">Nourbakhsh</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaomo</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rui</namePart>
        <namePart type="family">Fang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sameena</namePart>
        <namePart type="family">Shah</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Cer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Jurgens</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We use two types of word embeddings in our classifiers: the general word embeddings learned from 200 million tweets, and sentiment-specific word embeddings learned from 10 million tweets using distance supervision. We also incorporate a text feature model in our algorithm. This model produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. We participated in four subtasks (B, C, D & E for English), all of which are about topic-based message polarity classification. Our team is ranked #6 in subtask B, #3 by MAEu and #9 by MAEm in subtask C, #3 using RAE and #6 using KLD in subtask D, and #3 in subtask E.</abstract>
    <identifier type="citekey">li-etal-2017-funsentiment</identifier>
    <identifier type="doi">10.18653/v1/S17-2125</identifier>
    <location>
        <url>https://aclanthology.org/S17-2125/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>741</start>
            <end>746</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T funSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts
%A Li, Quanzhi
%A Nourbakhsh, Armineh
%A Liu, Xiaomo
%A Fang, Rui
%A Shah, Sameena
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F li-etal-2017-funsentiment
%X This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We use two types of word embeddings in our classifiers: the general word embeddings learned from 200 million tweets, and sentiment-specific word embeddings learned from 10 million tweets using distance supervision. We also incorporate a text feature model in our algorithm. This model produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. We participated in four subtasks (B, C, D & E for English), all of which are about topic-based message polarity classification. Our team is ranked #6 in subtask B, #3 by MAEu and #9 by MAEm in subtask C, #3 using RAE and #6 using KLD in subtask D, and #3 in subtask E.
%R 10.18653/v1/S17-2125
%U https://aclanthology.org/S17-2125/
%U https://doi.org/10.18653/v1/S17-2125
%P 741-746
Markdown (Informal)
[funSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts](https://aclanthology.org/S17-2125/) (Li et al., SemEval 2017)
ACL