@inproceedings{balikas-2017-twise,
title = "{T}wi{S}e at {S}em{E}val-2017 Task 4: Five-point {T}witter Sentiment Classification and Quantification",
author = "Balikas, Georgios",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2127",
doi = "10.18653/v1/S17-2127",
pages = "755--759",
abstract = "The paper describes the participation of the team {``}TwiSE{''} in the SemEval-2017 challenge. Specifically, I participated at Task 4 entitled {``}Sentiment Analysis in Twitter{''} for which I implemented systems for five-point tweet classification (Subtask C) and five-point tweet quantification (Subtask E) for English tweets. In the feature extraction steps the systems rely on the vector space model, morpho-syntactic analysis of the tweets and several sentiment lexicons. The classification step of Subtask C uses a Logistic Regression trained with the one-versus-rest approach. Another instance of Logistic Regression combined with the classify-and-count approach is trained for the quantification task of Subtask E. In the official leaderboard the system is ranked \textit{5/15} in Subtask C and \textit{2/12} in Subtask E.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="balikas-2017-twise">
<titleInfo>
<title>TwiSe at SemEval-2017 Task 4: Five-point Twitter Sentiment Classification and Quantification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Balikas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes the participation of the team “TwiSE” in the SemEval-2017 challenge. Specifically, I participated at Task 4 entitled “Sentiment Analysis in Twitter” for which I implemented systems for five-point tweet classification (Subtask C) and five-point tweet quantification (Subtask E) for English tweets. In the feature extraction steps the systems rely on the vector space model, morpho-syntactic analysis of the tweets and several sentiment lexicons. The classification step of Subtask C uses a Logistic Regression trained with the one-versus-rest approach. Another instance of Logistic Regression combined with the classify-and-count approach is trained for the quantification task of Subtask E. In the official leaderboard the system is ranked 5/15 in Subtask C and 2/12 in Subtask E.</abstract>
<identifier type="citekey">balikas-2017-twise</identifier>
<identifier type="doi">10.18653/v1/S17-2127</identifier>
<location>
<url>https://aclanthology.org/S17-2127</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>755</start>
<end>759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TwiSe at SemEval-2017 Task 4: Five-point Twitter Sentiment Classification and Quantification
%A Balikas, Georgios
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F balikas-2017-twise
%X The paper describes the participation of the team “TwiSE” in the SemEval-2017 challenge. Specifically, I participated at Task 4 entitled “Sentiment Analysis in Twitter” for which I implemented systems for five-point tweet classification (Subtask C) and five-point tweet quantification (Subtask E) for English tweets. In the feature extraction steps the systems rely on the vector space model, morpho-syntactic analysis of the tweets and several sentiment lexicons. The classification step of Subtask C uses a Logistic Regression trained with the one-versus-rest approach. Another instance of Logistic Regression combined with the classify-and-count approach is trained for the quantification task of Subtask E. In the official leaderboard the system is ranked 5/15 in Subtask C and 2/12 in Subtask E.
%R 10.18653/v1/S17-2127
%U https://aclanthology.org/S17-2127
%U https://doi.org/10.18653/v1/S17-2127
%P 755-759
Markdown (Informal)
[TwiSe at SemEval-2017 Task 4: Five-point Twitter Sentiment Classification and Quantification](https://aclanthology.org/S17-2127) (Balikas, SemEval 2017)
ACL