
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 796–801,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

 
 
 

 YNU-HPCC at SemEval 2017 Task 4: Using A Multi-Channel      

CNN-LSTM Model for Sentiment Classification 

 

Haowei Zhang, Jin Wang, Jixian Zhang, Xuejie Zhang 

School of Information Science and Engineering 

Yunnan University 

Kunming, P.R. China 

Contact: xjzhang@ynu.edu.cn 

 

 

Abstract 

In this paper, we propose a multi-channel 

convolutional neural network-long short-

term memory (CNN-LSTM) model that 

consists of two parts: multi-channel CNN 

and LSTM to analyze the sentiments of 

short English messages from Twitter. Un-

like a conventional CNN, the proposed 

model applies a multi-channel strategy that 

uses several filters of different length to ex-

tract active local n-gram features in differ-

ent scales. This information is then sequen-

tially composed using LSTM. By combin-

ing both CNN and LSTM, we can consider 

both local information within tweets and 

long-distance dependency across tweets in 

the classification process. Officially re-

leased results show that our system outper-

forms the baseline algorithm. 

1 Introduction 

Social network services (SNSs) such as Twitter, Fa-

cebook, and Weibo are used daily to express 

thoughts, opinions, and emotions. In Twitter, 6000 

short messages (tweets) are posted by users every 

second1. Therefore, Twitter is considered as one of 

the most concentrated opinion-expressing venues 

on the Internet. Subjective analysis of this type of 

user-generated content has become a vital task for 

politics, social networking, marketing, and adver-

tising. 

The potential application of sentiment analysis 

has been the motivation behind the SemEval 2017 

Task 4, which is a competition involving a series of 

subtasks that focus on Twitter sentiment classifica-

tions. Subtask A involves message polarity classi-

fication, which requires a system to classify 

                                                      
1 http://www.internetlivestats.com/twitter-statistics/ 

whether a message is of positive, negative, or neu-

tral sentiment. Subtasks B and C involve topic-

based message polarity classification, which re-

quire a system to classify a message on two- and 

five-point scales toward a certain topic. 

Various approaches have been proposed to ana-

lyze sentiment of text, and deep neural network 

has achieved state-of-the-art results in recent years. 

Proven successful text classification methods in-

clude convolutional neural networks (CNN) 

(LeCun et al., 1990; Y. Kim, 2014; Kalchbrenner 

et al., 2014) and Long Short-Term Memory 

(LSTM) (Hochreiter et al, 1997; Tai et al., 2015). 

In general, CNN applies a convolutional layer to 

extract active local n-gram features, but lost the or-

der of words. By contrast, LSTM can sequentially 

model texts. However, it focuses only on past in-

formation and draws conclusions from the tail part 

of texts. It fails to capture the local response from 

temporal data. 

In this paper, we propose a multi-channel CNN-

LSTM model for sentiment classification. It con-

sists of two parts: multi-channel CNN, and LSTM. 

Unlike a conventional CNN model, we apply a 

multi-channel strategy that uses several filters of 

different length. The model is thus able to extract 

active n-gram features of different scales. LSTM is 

then applied to compose those features sequentially. 

By combining both CNN and LSTM, both local in-

formation within tweets and long-distance depend-

ency across tweets can be considered in the classi-

fication process. To train the proposed neural 

model effectively using many parameters, we pre-

trained the model using a distant supervision ap-

proach (Go et al., 2009). In our experiment, we pre-

sented our participation of the proposed model for 
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the SemEval 2017 Task 4 Subtasks A, B, and C 

(Rosenthal et al., 2017).  

The remainder of this paper is organized as fol-

lows. In Section 2, we detail the architecture and 

multi-channel strategy of our model. Section 3 

summarizes the comparative results of our pro-

posed model against the baseline algorithm. Sec-

tion 4 offers a conclusion. 

2 Multi-Channel CNN-LSTM Model 

Figure 1 shows the architecture of our model. The 

model consists of six types of layers: embedding, 

convolution, max-pooling, LSTM, dense, and soft-

max. First, a tweet is input as a series of vectors of 

constituent words and transformed into a feature 

matrix by an embedding layer. The feature matrix 

is then passed into three parallel CNNs having dif-

ferent filter lengths. The max pooling layer extracts 

the max-over different CNNs results that are in-

tended to be the salient features, and input them to 

the LSTM layer. Then, normal dense and softmax 

layers use outputs from LSTM and output the final 

classification result. 

2.1 Embedding Layer 

The embedding layer is the first layer of the model. 

Each tweet is regarded as a sequence of word to-

kens t1, t2, …, tN, where N is the length of the token 

vector. According to statistics of tweets collected 

from twitter in Section 3.1, about 95% tweets is 

shorter than 30 words. Thus, we empirically limit 

the maximum of N to 30. Any tweet longer than 30 

tokens is truncated to 30, and any tweet shorter than 

30 is padded to 30 using zero padding. Every word 

is mapped to a d-dimension word vector. The out-

put of this layer is a matrix
N dT  . 

2.2 CNN Layer 

In each CNN layer, m filters are applied to a sliding 

window of width w over the matrix of previous em-

bedding layer. Let 
w dF   denote a filter matrix 

and b a bias. Assuming that Ti:i+j denotes the token 

vectors ti, ti+1, …, ti+j (if k > N, tk= 0), the result of 

each filter will be ,
 
where the i-th element 

of f is generated by: 

 : 1i i i wf T F b     (1) 

where   denotes convolution action. Before pro-

cessing f to the next layer, a nonlinear activation 

function is applied. Here, we use ReLU function 

(Nair and Hinton, 2010) for faster calculation. Con-

volving filters with window width w can extract w-

gram feature. By applying multiple convolving fil-

ters in this layer, we can extract active local n-gram 

features in different scales. To keep output sizes of 

different filters identical, we apply zero padding to 

token vectors before convolution. 

df 

 

Figure 1: Architecture of the proposed CNN-LSTM model. 
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2.3 Max-over Pooling Layer 

In this layer, the maximum value from different fil-

ters is taken as the most salient feature. Because the 

CNN layer with window width w can extract w-

gram features, the maximum values of the output 

from CNN layer are considered the most salient in-

formation in the target tweet. We choose max rather 

than mean pooling because the salient feature rep-

resents the most distinguishing trait of a tweet. 

2.4 LSTM Layer 

The architecture of a recurrent neural network 

(RNN) is suitable for processing sequential data. 

However, a simple RNN is usually difficult to train 

because of the gradient vanishing problem. To ad-

dress this problem, LSTM introduces a gating 

structure that allows for explicit memory updates 

and deliveries. As shown in Figure 2, LSTM calcu-

lates hidden state ht using the following equations: 

 Gates: 
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 Input transformation: 
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 State update: 
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 (4) 

where xt is the input vector; ct is the cell state vector; 

W, U, and b are layer parameters; ft, it, and ot are 

gate vectors; and σ is a sigmoid function. Note that 

  denotes the Hadamard product.  

                                                      
2 Emoji and emoticons list are based on https://en.wikipe-

dia.org/wiki/List_of_emoticons 

2.5 Hidden Layer 

This is a fully connected layer. It multiplies results 

from the previous layer with a weight matrix and 

adds a bias vector. The ReLU activation function is 

also applied. The result vectors are finally input to 

the output layer. 

2.6 Output Layer 

This layer outputs the final classification result. It 

is a fully connected layer using softmax as an acti-

vation function. The output of this layer is a vector 

calculated by: 

 

1

( | )

T
j

T
j

x w

K x w

k

e
P y j x

e


 


  (5) 

where x is the input vector, w is the weight vector, 

and K is the number of classes. Thus, the final clas-

sification result �̂� will be: 

 ˆ argmax ( | )
j

y P y j x    (6) 

3 Experiments and Evaluation 

3.1 Data Preparation 

We implemented a simple tokenizer to process 

tweets into array of tokens. Because we are only 

participating in English tasks, all characters other 

than English letters or punctuations are ignored. 

Every tweet is applied with the patterns shown in 

Table 1. We applied the first four patterns and low-

ered all letters to accommodate the known tokens 

in GloVe (Pennington et al., 2014) pretrained word 

vectors. 

Before training on given tweets, we pretrained 

the model using data with distant supervision. Two 

external datasets were used. The first was crawled 

from Twitter. Thanks to the streaming API kindly 

provided by Twitter, we collected approximately 

428 million tweets (all tweets were published be-

tween Nov. 2016 and Jan. 2017). Approximately 

one sixth of them had only one emoji or emoticon2, 

which perfectly fit the condition for weak labeled. 

it

ctft

ht

ot

ct-1

(xt, ht-1)

c_int

 

Figure 2: Architecture of LSTM cell. 

 

Content Example Result 

Usernames start with @ @username1 <user> 

URLs http://t.co/short <url> 

Numbers 12,450 <number> 

Hashtags #topic <hashtag> 

Slash / or 

Table 1: Example of pre-processing pattern. 
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The second dataset was from Sentiment140, which 

provided 1.6 million balanced-distribution tweets. 

We used GloVe pretrained data3 to initialize the 

weight of the embedding layer. GloVe is a popular 

unsupervised machine learning algorithm to ac-

quire word embedding vectors. It is trained on 

global word co-occurrence counts and achieves 

state of the art performance on word analogy da-

tasets. In this competition, we used the 200-dimen-

sion word vectors that were pretrained on two bil-

lion tweets. 

3.2 Implementation 

We used Keras with Theano (Bergstra et al., 2010) 

backend, which can fully utilize the GPU compu-

ting resource. CUDA (Nickolls et al., 2008) and 

cuDNN (Chetlur and Woolley, 2014) were used to 

accelerate the system. The optimizer we used was 

Adadelta (Zeiler, 2012). 

The hyper-parameters were tuned in train and 

dev sets using the scikit-learn (Pedregosa et al., 

2012) grid search function, which can iterate 

through all possible parameter combinations to 

identify the best performance. The best-tuned pa-

rameters include as follows. The CNN filter count 

is m = 200; the length of multi-convolving filters 

are 1, 2, and 3; and the dimension of the hidden 

layer in LSTM is 512. To prevent over-fitting, we 

also applied dropout (Tobergte and Curtis, 2013) 

after LSTM layer and fully connected layer at rate 

of 0.5. The training also runs with early stopping 

(Prechelt, 1998), terminating processing if valida-

tion loss has not improved within the last 5 epochs. 

3.3 Evaluation Metrics 

We evaluated our system on Subtasks A, B, and C. 

Subtask A was a message polarity classification of 

three points. Subtasks B and C involved ordinal 

sentiment classification of two and five points. 

Metrics of Subtasks A and B were average F1-score, 
                                                      
3 http://nlp.stanford.edu/projects/glove/ 

average recall, and accuracy. The F1-score was cal-

culated as: 

 1

2 p p
p

p p
F

 

 



, (7) 

where 1

pF  is the F1-score of one class (p denotes 

positive here as an example), 
p   and p   denote 

precision and recall, respectively.  

Metrics of subtask C were MAEM and MAEμ, 

which were calculated as: 

 
1
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   (9) 

where yi is the true label of item xi, h(xi) is the pre-

dicted label, and Tej is the set of test documents 

whose true class is cj. A higher F1-score, recall, ac-

curacy, and a lower MAEμ and MAEM value indicate 

more accurate forecasting performance. 

3.4 Results and Discussion 

To prove the advantages of our system architecture, 

we ran a 5-fold cross validation on different sets of 

layers excepting embedding and hidden layers. A 

single LSTM achieved 0.617 accuracy on train and 

dev data. A single CNN achieved 0.606, a multi-

channel CNN 0.563, and a single CNN with LSTM 

0.603. Our multi-channel CNN with LSTM outper-

formed all other architecture with a 0.640 accuracy.  

Table 2 presents the detailed results of our eval-

uation against the baseline algorithm. That our sys-

tem achieved 0.647 accuracy on Subtask A is note-

worthy, as the best score for this subtask was 0.651. 

The evaluation results revealed that our proposed 

system is considerably improved than the average 

baseline, which we attribute to our multi-channel 

CNN with LSTM architecture and distant supervi-

sion training. The proposed system can effectively 

Subtask Metrics Final Result Baseline Rank Participants 

A 

Average Recall 0.633 0.333 12 39 

Average F1-Score  0.612 0.135 15 39 

Accuracy 0.647 0.333 7 39 

B 

Average Recall  0.834 0.5 6 23 

Average F1-Score 0.816 0.317 10 23 

Accuracy 0.818 0.5 10 23 

C 
MAEM 0.925 1.6 12 15 

MAEμ 0.567 1.315 8 15 

Table 2: The evaluation results on Subtask A, B, C of  

SemEval 2017 Task 4: Sentiment analysis in Twitter.  
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extract features from tweets and classify sentiments 

of them. 

4 Conclusion 

In this paper, we described our system submissions 

to the SemEval 2017 Workshop Task 4, which in-

volved sentiment analysis in Twitter. The proposed 

multi-channel CNN-LSTM model combines CNN 

and LSTM to extract both local information within 

tweets and long-distance dependency across tweets. 

A large number of tweets with distant supervision 

were leveraged to pretrain the model. Officially re-

leased results revealed that our system outper-

formed all baseline algorithms, and ranked 14th on 

Subtask A, 10th on Subtask B, and 8th on MAEμ of 

Subtask C. In the future, we will attempt to enhance 

the tokenizer and model architecture to achieve an 

improved classification system. 
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