@inproceedings{deshmane-friedrichs-2017-tsa,
title = "{TSA}-{INF} at {S}em{E}val-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for {T}witter Sentiment Analysis",
author = "Deshmane, Amit Ajit and
Friedrichs, Jasper",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2135",
doi = "10.18653/v1/S17-2135",
pages = "802--806",
abstract = "This paper describes the submission of team TSA-INF to SemEval-2017 Task 4 Subtask A. The submitted system is an ensemble of three varying deep learning architectures for sentiment analysis. The core of the architecture is a convolutional neural network that performs well on text classification as is. The second subsystem is a gated recurrent neural network implementation. Additionally, the third system integrates opinion lexicons directly into a convolution neural network architecture. The resulting ensemble of the three architectures achieved a top ten ranking with a macro-averaged recall of 64.3{\%}. Additional results comparing variations of the submitted system are not conclusive enough to determine a best architecture, but serve as a benchmark for further implementations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deshmane-friedrichs-2017-tsa">
<titleInfo>
<title>TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for Twitter Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="given">Ajit</namePart>
<namePart type="family">Deshmane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jasper</namePart>
<namePart type="family">Friedrichs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the submission of team TSA-INF to SemEval-2017 Task 4 Subtask A. The submitted system is an ensemble of three varying deep learning architectures for sentiment analysis. The core of the architecture is a convolutional neural network that performs well on text classification as is. The second subsystem is a gated recurrent neural network implementation. Additionally, the third system integrates opinion lexicons directly into a convolution neural network architecture. The resulting ensemble of the three architectures achieved a top ten ranking with a macro-averaged recall of 64.3%. Additional results comparing variations of the submitted system are not conclusive enough to determine a best architecture, but serve as a benchmark for further implementations.</abstract>
<identifier type="citekey">deshmane-friedrichs-2017-tsa</identifier>
<identifier type="doi">10.18653/v1/S17-2135</identifier>
<location>
<url>https://aclanthology.org/S17-2135</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>802</start>
<end>806</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for Twitter Sentiment Analysis
%A Deshmane, Amit Ajit
%A Friedrichs, Jasper
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F deshmane-friedrichs-2017-tsa
%X This paper describes the submission of team TSA-INF to SemEval-2017 Task 4 Subtask A. The submitted system is an ensemble of three varying deep learning architectures for sentiment analysis. The core of the architecture is a convolutional neural network that performs well on text classification as is. The second subsystem is a gated recurrent neural network implementation. Additionally, the third system integrates opinion lexicons directly into a convolution neural network architecture. The resulting ensemble of the three architectures achieved a top ten ranking with a macro-averaged recall of 64.3%. Additional results comparing variations of the submitted system are not conclusive enough to determine a best architecture, but serve as a benchmark for further implementations.
%R 10.18653/v1/S17-2135
%U https://aclanthology.org/S17-2135
%U https://doi.org/10.18653/v1/S17-2135
%P 802-806
Markdown (Informal)
[TSA-INF at SemEval-2017 Task 4: An Ensemble of Deep Learning Architectures Including Lexicon Features for Twitter Sentiment Analysis](https://aclanthology.org/S17-2135) (Deshmane & Friedrichs, SemEval 2017)
ACL