@inproceedings{pivovarova-etal-2017-hcs,
title = "{HCS} at {S}em{E}val-2017 Task 5: Polarity detection in business news using convolutional neural networks",
author = "Pivovarova, Lidia and
Escoter, Lloren{\c{c}} and
Klami, Arto and
Yangarber, Roman",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2143/",
doi = "10.18653/v1/S17-2143",
pages = "842--846",
abstract = "Task 5 of SemEval-2017 involves fine-grained sentiment analysis on financial microblogs and news. Our solution for determining the sentiment score extends an earlier convolutional neural network for sentiment analysis in several ways. We explicitly encode a focus on a particular company, we apply a data augmentation scheme, and use a larger data collection to complement the small training data provided by the task organizers. The best results were achieved by training a model on an external dataset and then tuning it using the provided training dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pivovarova-etal-2017-hcs">
<titleInfo>
<title>HCS at SemEval-2017 Task 5: Polarity detection in business news using convolutional neural networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Llorenç</namePart>
<namePart type="family">Escoter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arto</namePart>
<namePart type="family">Klami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Task 5 of SemEval-2017 involves fine-grained sentiment analysis on financial microblogs and news. Our solution for determining the sentiment score extends an earlier convolutional neural network for sentiment analysis in several ways. We explicitly encode a focus on a particular company, we apply a data augmentation scheme, and use a larger data collection to complement the small training data provided by the task organizers. The best results were achieved by training a model on an external dataset and then tuning it using the provided training dataset.</abstract>
<identifier type="citekey">pivovarova-etal-2017-hcs</identifier>
<identifier type="doi">10.18653/v1/S17-2143</identifier>
<location>
<url>https://aclanthology.org/S17-2143/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>842</start>
<end>846</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HCS at SemEval-2017 Task 5: Polarity detection in business news using convolutional neural networks
%A Pivovarova, Lidia
%A Escoter, Llorenç
%A Klami, Arto
%A Yangarber, Roman
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F pivovarova-etal-2017-hcs
%X Task 5 of SemEval-2017 involves fine-grained sentiment analysis on financial microblogs and news. Our solution for determining the sentiment score extends an earlier convolutional neural network for sentiment analysis in several ways. We explicitly encode a focus on a particular company, we apply a data augmentation scheme, and use a larger data collection to complement the small training data provided by the task organizers. The best results were achieved by training a model on an external dataset and then tuning it using the provided training dataset.
%R 10.18653/v1/S17-2143
%U https://aclanthology.org/S17-2143/
%U https://doi.org/10.18653/v1/S17-2143
%P 842-846
Markdown (Informal)
[HCS at SemEval-2017 Task 5: Polarity detection in business news using convolutional neural networks](https://aclanthology.org/S17-2143/) (Pivovarova et al., SemEval 2017)
ACL