@inproceedings{jiang-etal-2017-ecnu,
title = "{ECNU} at {S}em{E}val-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain",
author = "Jiang, Mengxiao and
Lan, Man and
Wu, Yuanbin",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2152/",
doi = "10.18653/v1/S17-2152",
pages = "888--893",
abstract = "This paper describes our systems submitted to the Fine-Grained Sentiment Analysis on Financial Microblogs and News task (i.e., Task 5) in SemEval-2017. This task includes two subtasks in microblogs and news headline domain respectively. To settle this problem, we extract four types of effective features, including linguistic features, sentiment lexicon features, domain-specific features and word embedding features. Then we employ these features to construct models by using ensemble regression algorithms. Our submissions rank 1st and rank 5th in subtask 1 and subtask 2 respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2017-ecnu">
<titleInfo>
<title>ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengxiao</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanbin</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our systems submitted to the Fine-Grained Sentiment Analysis on Financial Microblogs and News task (i.e., Task 5) in SemEval-2017. This task includes two subtasks in microblogs and news headline domain respectively. To settle this problem, we extract four types of effective features, including linguistic features, sentiment lexicon features, domain-specific features and word embedding features. Then we employ these features to construct models by using ensemble regression algorithms. Our submissions rank 1st and rank 5th in subtask 1 and subtask 2 respectively.</abstract>
<identifier type="citekey">jiang-etal-2017-ecnu</identifier>
<identifier type="doi">10.18653/v1/S17-2152</identifier>
<location>
<url>https://aclanthology.org/S17-2152/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>888</start>
<end>893</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain
%A Jiang, Mengxiao
%A Lan, Man
%A Wu, Yuanbin
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F jiang-etal-2017-ecnu
%X This paper describes our systems submitted to the Fine-Grained Sentiment Analysis on Financial Microblogs and News task (i.e., Task 5) in SemEval-2017. This task includes two subtasks in microblogs and news headline domain respectively. To settle this problem, we extract four types of effective features, including linguistic features, sentiment lexicon features, domain-specific features and word embedding features. Then we employ these features to construct models by using ensemble regression algorithms. Our submissions rank 1st and rank 5th in subtask 1 and subtask 2 respectively.
%R 10.18653/v1/S17-2152
%U https://aclanthology.org/S17-2152/
%U https://doi.org/10.18653/v1/S17-2152
%P 888-893
Markdown (Informal)
[ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain](https://aclanthology.org/S17-2152/) (Jiang et al., SemEval 2017)
ACL