@inproceedings{kumar-etal-2017-iitpb,
    title = "{IITPB} at {S}em{E}val-2017 Task 5: Sentiment Prediction in Financial Text",
    author = "Kumar, Abhishek  and
      Sethi, Abhishek  and
      Akhtar, Md Shad  and
      Ekbal, Asif  and
      Biemann, Chris  and
      Bhattacharyya, Pushpak",
    editor = "Bethard, Steven  and
      Carpuat, Marine  and
      Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      Cer, Daniel  and
      Jurgens, David",
    booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S17-2153/",
    doi = "10.18653/v1/S17-2153",
    pages = "894--898",
    abstract = "This paper reports team IITPB{'}s participation in the SemEval 2017 Task 5 on `Fine-grained sentiment analysis on financial microblogs and news'. We developed 2 systems for the two tracks. One system was based on an ensemble of Support Vector Classifier and Logistic Regression. This system relied on Distributional Thesaurus (DT), word embeddings and lexicon features to predict a floating sentiment value between -1 and +1. The other system was based on Support Vector Regression using word embeddings, lexicon features, and PMI scores as features. The system was ranked 5th in track 1 and 8th in track 2."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-etal-2017-iitpb">
    <titleInfo>
        <title>IITPB at SemEval-2017 Task 5: Sentiment Prediction in Financial Text</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Abhishek</namePart>
        <namePart type="family">Kumar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Abhishek</namePart>
        <namePart type="family">Sethi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Md</namePart>
        <namePart type="given">Shad</namePart>
        <namePart type="family">Akhtar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Asif</namePart>
        <namePart type="family">Ekbal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Chris</namePart>
        <namePart type="family">Biemann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Pushpak</namePart>
        <namePart type="family">Bhattacharyya</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Daniel</namePart>
            <namePart type="family">Cer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">David</namePart>
            <namePart type="family">Jurgens</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper reports team IITPB’s participation in the SemEval 2017 Task 5 on ‘Fine-grained sentiment analysis on financial microblogs and news’. We developed 2 systems for the two tracks. One system was based on an ensemble of Support Vector Classifier and Logistic Regression. This system relied on Distributional Thesaurus (DT), word embeddings and lexicon features to predict a floating sentiment value between -1 and +1. The other system was based on Support Vector Regression using word embeddings, lexicon features, and PMI scores as features. The system was ranked 5th in track 1 and 8th in track 2.</abstract>
    <identifier type="citekey">kumar-etal-2017-iitpb</identifier>
    <identifier type="doi">10.18653/v1/S17-2153</identifier>
    <location>
        <url>https://aclanthology.org/S17-2153/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>894</start>
            <end>898</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IITPB at SemEval-2017 Task 5: Sentiment Prediction in Financial Text
%A Kumar, Abhishek
%A Sethi, Abhishek
%A Akhtar, Md Shad
%A Ekbal, Asif
%A Biemann, Chris
%A Bhattacharyya, Pushpak
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F kumar-etal-2017-iitpb
%X This paper reports team IITPB’s participation in the SemEval 2017 Task 5 on ‘Fine-grained sentiment analysis on financial microblogs and news’. We developed 2 systems for the two tracks. One system was based on an ensemble of Support Vector Classifier and Logistic Regression. This system relied on Distributional Thesaurus (DT), word embeddings and lexicon features to predict a floating sentiment value between -1 and +1. The other system was based on Support Vector Regression using word embeddings, lexicon features, and PMI scores as features. The system was ranked 5th in track 1 and 8th in track 2.
%R 10.18653/v1/S17-2153
%U https://aclanthology.org/S17-2153/
%U https://doi.org/10.18653/v1/S17-2153
%P 894-898
Markdown (Informal)
[IITPB at SemEval-2017 Task 5: Sentiment Prediction in Financial Text](https://aclanthology.org/S17-2153/) (Kumar et al., SemEval 2017)
ACL
- Abhishek Kumar, Abhishek Sethi, Md Shad Akhtar, Asif Ekbal, Chris Biemann, and Pushpak Bhattacharyya. 2017. IITPB at SemEval-2017 Task 5: Sentiment Prediction in Financial Text. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 894–898, Vancouver, Canada. Association for Computational Linguistics.