@inproceedings{barik-marsi-2017-ntnu,
title = "{NTNU}-2 at {S}em{E}val-2017 Task 10: Identifying Synonym and Hyponym Relations among Keyphrases in Scientific Documents",
author = "Barik, Biswanath and
Marsi, Erwin",
editor = "Bethard, Steven and
Carpuat, Marine and
Apidianaki, Marianna and
Mohammad, Saif M. and
Cer, Daniel and
Jurgens, David",
booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S17-2168/",
doi = "10.18653/v1/S17-2168",
pages = "965--968",
abstract = "This paper presents our relation extraction system for subtask C of SemEval-2017 Task 10: ScienceIE. Assuming that the keyphrases are already annotated in the input data, our work explores a wide range of linguistic features, applies various feature selection techniques, optimizes the hyper parameters and class weights and experiments with different problem formulations (single classification model vs individual classifiers for each keyphrase type, single-step classifier vs pipeline classifier for hyponym relations). Performance of five popular classification algorithms are evaluated for each problem formulation along with feature selection. The best setting achieved an F1 score of 71.0{\%} for synonym and 30.0{\%} for hyponym relation on the test data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barik-marsi-2017-ntnu">
<titleInfo>
<title>NTNU-2 at SemEval-2017 Task 10: Identifying Synonym and Hyponym Relations among Keyphrases in Scientific Documents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Biswanath</namePart>
<namePart type="family">Barik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erwin</namePart>
<namePart type="family">Marsi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Cer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our relation extraction system for subtask C of SemEval-2017 Task 10: ScienceIE. Assuming that the keyphrases are already annotated in the input data, our work explores a wide range of linguistic features, applies various feature selection techniques, optimizes the hyper parameters and class weights and experiments with different problem formulations (single classification model vs individual classifiers for each keyphrase type, single-step classifier vs pipeline classifier for hyponym relations). Performance of five popular classification algorithms are evaluated for each problem formulation along with feature selection. The best setting achieved an F1 score of 71.0% for synonym and 30.0% for hyponym relation on the test data.</abstract>
<identifier type="citekey">barik-marsi-2017-ntnu</identifier>
<identifier type="doi">10.18653/v1/S17-2168</identifier>
<location>
<url>https://aclanthology.org/S17-2168/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>965</start>
<end>968</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NTNU-2 at SemEval-2017 Task 10: Identifying Synonym and Hyponym Relations among Keyphrases in Scientific Documents
%A Barik, Biswanath
%A Marsi, Erwin
%Y Bethard, Steven
%Y Carpuat, Marine
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y Cer, Daniel
%Y Jurgens, David
%S Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F barik-marsi-2017-ntnu
%X This paper presents our relation extraction system for subtask C of SemEval-2017 Task 10: ScienceIE. Assuming that the keyphrases are already annotated in the input data, our work explores a wide range of linguistic features, applies various feature selection techniques, optimizes the hyper parameters and class weights and experiments with different problem formulations (single classification model vs individual classifiers for each keyphrase type, single-step classifier vs pipeline classifier for hyponym relations). Performance of five popular classification algorithms are evaluated for each problem formulation along with feature selection. The best setting achieved an F1 score of 71.0% for synonym and 30.0% for hyponym relation on the test data.
%R 10.18653/v1/S17-2168
%U https://aclanthology.org/S17-2168/
%U https://doi.org/10.18653/v1/S17-2168
%P 965-968
Markdown (Informal)
[NTNU-2 at SemEval-2017 Task 10: Identifying Synonym and Hyponym Relations among Keyphrases in Scientific Documents](https://aclanthology.org/S17-2168/) (Barik & Marsi, SemEval 2017)
ACL