@inproceedings{duppada-etal-2018-seernet,
    title = "{S}eer{N}et at {S}em{E}val-2018 Task 1: Domain Adaptation for Affect in Tweets",
    author = "Duppada, Venkatesh  and
      Jain, Royal  and
      Hiray, Sushant",
    editor = "Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      May, Jonathan  and
      Shutova, Ekaterina  and
      Bethard, Steven  and
      Carpuat, Marine",
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1002/",
    doi = "10.18653/v1/S18-1002",
    pages = "18--23",
    abstract = "The paper describes the best performing system for the SemEval-2018 Affect in Tweets(English) sub-tasks. The system focuses on the ordinal classification and regression sub-tasks for valence and emotion. For ordinal classification valence is classified into 7 different classes ranging from -3 to 3 whereas emotion is classified into 4 different classes 0 to 3 separately for each emotion namely anger, fear, joy and sadness. The regression sub-tasks estimate the intensity of valence and each emotion. The system performs domain adaptation of 4 different models and creates an ensemble to give the final prediction. The proposed system achieved 1stposition out of 75 teams which participated in the fore-mentioned sub-tasks. We outperform the baseline model by margins ranging from 49.2{\%} to 76.4 {\%}, thus, pushing the state-of-the-art significantly."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duppada-etal-2018-seernet">
    <titleInfo>
        <title>SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Venkatesh</namePart>
        <namePart type="family">Duppada</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Royal</namePart>
        <namePart type="family">Jain</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sushant</namePart>
        <namePart type="family">Hiray</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The paper describes the best performing system for the SemEval-2018 Affect in Tweets(English) sub-tasks. The system focuses on the ordinal classification and regression sub-tasks for valence and emotion. For ordinal classification valence is classified into 7 different classes ranging from -3 to 3 whereas emotion is classified into 4 different classes 0 to 3 separately for each emotion namely anger, fear, joy and sadness. The regression sub-tasks estimate the intensity of valence and each emotion. The system performs domain adaptation of 4 different models and creates an ensemble to give the final prediction. The proposed system achieved 1stposition out of 75 teams which participated in the fore-mentioned sub-tasks. We outperform the baseline model by margins ranging from 49.2% to 76.4 %, thus, pushing the state-of-the-art significantly.</abstract>
    <identifier type="citekey">duppada-etal-2018-seernet</identifier>
    <identifier type="doi">10.18653/v1/S18-1002</identifier>
    <location>
        <url>https://aclanthology.org/S18-1002/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>18</start>
            <end>23</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets
%A Duppada, Venkatesh
%A Jain, Royal
%A Hiray, Sushant
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F duppada-etal-2018-seernet
%X The paper describes the best performing system for the SemEval-2018 Affect in Tweets(English) sub-tasks. The system focuses on the ordinal classification and regression sub-tasks for valence and emotion. For ordinal classification valence is classified into 7 different classes ranging from -3 to 3 whereas emotion is classified into 4 different classes 0 to 3 separately for each emotion namely anger, fear, joy and sadness. The regression sub-tasks estimate the intensity of valence and each emotion. The system performs domain adaptation of 4 different models and creates an ensemble to give the final prediction. The proposed system achieved 1stposition out of 75 teams which participated in the fore-mentioned sub-tasks. We outperform the baseline model by margins ranging from 49.2% to 76.4 %, thus, pushing the state-of-the-art significantly.
%R 10.18653/v1/S18-1002
%U https://aclanthology.org/S18-1002/
%U https://doi.org/10.18653/v1/S18-1002
%P 18-23
Markdown (Informal)
[SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets](https://aclanthology.org/S18-1002/) (Duppada et al., SemEval 2018)
ACL