@inproceedings{coltekin-rama-2018-tubingen,
title = {{T}{\"u}bingen-{O}slo at {S}em{E}val-2018 Task 2: {SVM}s perform better than {RNN}s in Emoji Prediction},
author = {{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i} and
Rama, Taraka},
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1004",
doi = "10.18653/v1/S18-1004",
pages = "34--38",
abstract = "This paper describes our participation in the SemEval-2018 task Multilingual Emoji Prediction. We participated in both English and Spanish subtasks, experimenting with support vector machines (SVMs) and recurrent neural networks. Our SVM classifier obtained the top rank in both subtasks with macro-averaged F1-measures of 35.99{\%} for English and 22.36{\%} for Spanish data sets. Similar to a few earlier attempts, the results with neural networks were not on par with linear SVMs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="coltekin-rama-2018-tubingen">
<titleInfo>
<title>Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Çağrı</namePart>
<namePart type="family">Çöltekin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taraka</namePart>
<namePart type="family">Rama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our participation in the SemEval-2018 task Multilingual Emoji Prediction. We participated in both English and Spanish subtasks, experimenting with support vector machines (SVMs) and recurrent neural networks. Our SVM classifier obtained the top rank in both subtasks with macro-averaged F1-measures of 35.99% for English and 22.36% for Spanish data sets. Similar to a few earlier attempts, the results with neural networks were not on par with linear SVMs.</abstract>
<identifier type="citekey">coltekin-rama-2018-tubingen</identifier>
<identifier type="doi">10.18653/v1/S18-1004</identifier>
<location>
<url>https://aclanthology.org/S18-1004</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>34</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction
%A Çöltekin, Çağrı
%A Rama, Taraka
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F coltekin-rama-2018-tubingen
%X This paper describes our participation in the SemEval-2018 task Multilingual Emoji Prediction. We participated in both English and Spanish subtasks, experimenting with support vector machines (SVMs) and recurrent neural networks. Our SVM classifier obtained the top rank in both subtasks with macro-averaged F1-measures of 35.99% for English and 22.36% for Spanish data sets. Similar to a few earlier attempts, the results with neural networks were not on par with linear SVMs.
%R 10.18653/v1/S18-1004
%U https://aclanthology.org/S18-1004
%U https://doi.org/10.18653/v1/S18-1004
%P 34-38
Markdown (Informal)
[Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction](https://aclanthology.org/S18-1004) (Çöltekin & Rama, SemEval 2018)
ACL