@inproceedings{mirza-etal-2018-koi,
title = "{KOI} at {S}em{E}val-2018 Task 5: Building Knowledge Graph of Incidents",
author = "Mirza, Paramita and
Darari, Fariz and
Mahendra, Rahmad",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1010/",
doi = "10.18653/v1/S18-1010",
pages = "81--87",
abstract = "We present KOI (Knowledge of Incidents), a system that given news articles as input, builds a knowledge graph (KOI-KG) of incidental events. KOI-KG can then be used to efficiently answer questions such {\textquotedblleft}How many killing incidents happened in 2017 that involve Sean?{\textquotedblright} The required steps in building the KG include: (i) document preprocessing involving word sense disambiguation, named-entity recognition, temporal expression recognition and normalization, and semantic role labeling; (ii) incidental event extraction and coreference resolution via document clustering; and (iii) KG construction and population."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mirza-etal-2018-koi">
<titleInfo>
<title>KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paramita</namePart>
<namePart type="family">Mirza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fariz</namePart>
<namePart type="family">Darari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rahmad</namePart>
<namePart type="family">Mahendra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present KOI (Knowledge of Incidents), a system that given news articles as input, builds a knowledge graph (KOI-KG) of incidental events. KOI-KG can then be used to efficiently answer questions such “How many killing incidents happened in 2017 that involve Sean?” The required steps in building the KG include: (i) document preprocessing involving word sense disambiguation, named-entity recognition, temporal expression recognition and normalization, and semantic role labeling; (ii) incidental event extraction and coreference resolution via document clustering; and (iii) KG construction and population.</abstract>
<identifier type="citekey">mirza-etal-2018-koi</identifier>
<identifier type="doi">10.18653/v1/S18-1010</identifier>
<location>
<url>https://aclanthology.org/S18-1010/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>81</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents
%A Mirza, Paramita
%A Darari, Fariz
%A Mahendra, Rahmad
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F mirza-etal-2018-koi
%X We present KOI (Knowledge of Incidents), a system that given news articles as input, builds a knowledge graph (KOI-KG) of incidental events. KOI-KG can then be used to efficiently answer questions such “How many killing incidents happened in 2017 that involve Sean?” The required steps in building the KG include: (i) document preprocessing involving word sense disambiguation, named-entity recognition, temporal expression recognition and normalization, and semantic role labeling; (ii) incidental event extraction and coreference resolution via document clustering; and (iii) KG construction and population.
%R 10.18653/v1/S18-1010
%U https://aclanthology.org/S18-1010/
%U https://doi.org/10.18653/v1/S18-1010
%P 81-87
Markdown (Informal)
[KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents](https://aclanthology.org/S18-1010/) (Mirza et al., SemEval 2018)
ACL