@inproceedings{zhang-etal-2018-nlpzzx,
title = "{NLPZZX} at {S}em{E}val-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Determination",
author = "Zhang, Zhengxin and
Zhou, Qimin and
Wu, Hao",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1015/",
doi = "10.18653/v1/S18-1015",
pages = "116--122",
abstract = "In this paper, we put forward a system that competed at SemEval-2018 Task 1: {\textquotedblleft}Affect in Tweets{\textquotedblright}. Our system uses a simple yet effective ensemble method which combines several neural network components. We participate in two subtasks for English tweets: EI-reg and V-reg. For two subtasks, different combinations of neural components are examined. For EI-reg, our system achieves an accuracy of 0.727 in Pearson Correlation Coefficient (all instances) and an accuracy of 0.555 in Pearson Correlation Coefficient (0.5-1). For V-reg, the achieved accuracy scores are respectively 0.835 and 0.670"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-nlpzzx">
<titleInfo>
<title>NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Determination</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhengxin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qimin</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we put forward a system that competed at SemEval-2018 Task 1: “Affect in Tweets”. Our system uses a simple yet effective ensemble method which combines several neural network components. We participate in two subtasks for English tweets: EI-reg and V-reg. For two subtasks, different combinations of neural components are examined. For EI-reg, our system achieves an accuracy of 0.727 in Pearson Correlation Coefficient (all instances) and an accuracy of 0.555 in Pearson Correlation Coefficient (0.5-1). For V-reg, the achieved accuracy scores are respectively 0.835 and 0.670</abstract>
<identifier type="citekey">zhang-etal-2018-nlpzzx</identifier>
<identifier type="doi">10.18653/v1/S18-1015</identifier>
<location>
<url>https://aclanthology.org/S18-1015/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>116</start>
<end>122</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Determination
%A Zhang, Zhengxin
%A Zhou, Qimin
%A Wu, Hao
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F zhang-etal-2018-nlpzzx
%X In this paper, we put forward a system that competed at SemEval-2018 Task 1: “Affect in Tweets”. Our system uses a simple yet effective ensemble method which combines several neural network components. We participate in two subtasks for English tweets: EI-reg and V-reg. For two subtasks, different combinations of neural components are examined. For EI-reg, our system achieves an accuracy of 0.727 in Pearson Correlation Coefficient (all instances) and an accuracy of 0.555 in Pearson Correlation Coefficient (0.5-1). For V-reg, the achieved accuracy scores are respectively 0.835 and 0.670
%R 10.18653/v1/S18-1015
%U https://aclanthology.org/S18-1015/
%U https://doi.org/10.18653/v1/S18-1015
%P 116-122
Markdown (Informal)
[NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Determination](https://aclanthology.org/S18-1015/) (Zhang et al., SemEval 2018)
ACL