@inproceedings{priban-etal-2018-uwb,
title = "{UWB} at {S}em{E}val-2018 Task 1: Emotion Intensity Detection in Tweets",
author = "P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Hercig, Tom{\'a}{\v{s}} and
Lenc, Ladislav",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1018/",
doi = "10.18653/v1/S18-1018",
pages = "133--140",
abstract = "This paper describes our system created for the SemEval-2018 Task 1: Affect in Tweets (AIT-2018). We participated in both the regression and the ordinal classification subtasks for emotion intensity detection in English, Arabic, and Spanish. For the regression subtask we use the AffectiveTweets system with added features using various word embeddings, lexicons, and LDA. For the ordinal classification we additionally use our Brainy system with features using parse tree, POS tags, and morphological features. The most beneficial features apart from word and character n-grams include word embeddings, POS count and morphological features."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="priban-etal-2018-uwb">
<titleInfo>
<title>UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Přibáň</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Hercig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ladislav</namePart>
<namePart type="family">Lenc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system created for the SemEval-2018 Task 1: Affect in Tweets (AIT-2018). We participated in both the regression and the ordinal classification subtasks for emotion intensity detection in English, Arabic, and Spanish. For the regression subtask we use the AffectiveTweets system with added features using various word embeddings, lexicons, and LDA. For the ordinal classification we additionally use our Brainy system with features using parse tree, POS tags, and morphological features. The most beneficial features apart from word and character n-grams include word embeddings, POS count and morphological features.</abstract>
<identifier type="citekey">priban-etal-2018-uwb</identifier>
<identifier type="doi">10.18653/v1/S18-1018</identifier>
<location>
<url>https://aclanthology.org/S18-1018/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>133</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets
%A Přibáň, Pavel
%A Hercig, Tomáš
%A Lenc, Ladislav
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F priban-etal-2018-uwb
%X This paper describes our system created for the SemEval-2018 Task 1: Affect in Tweets (AIT-2018). We participated in both the regression and the ordinal classification subtasks for emotion intensity detection in English, Arabic, and Spanish. For the regression subtask we use the AffectiveTweets system with added features using various word embeddings, lexicons, and LDA. For the ordinal classification we additionally use our Brainy system with features using parse tree, POS tags, and morphological features. The most beneficial features apart from word and character n-grams include word embeddings, POS count and morphological features.
%R 10.18653/v1/S18-1018
%U https://aclanthology.org/S18-1018/
%U https://doi.org/10.18653/v1/S18-1018
%P 133-140
Markdown (Informal)
[UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets](https://aclanthology.org/S18-1018/) (Přibáň et al., SemEval 2018)
ACL