@inproceedings{jabreel-moreno-2018-eitaka,
title = "{E}i{TAKA} at {S}em{E}val-2018 Task 1: An Ensemble of N-Channels {C}onv{N}et and {XG}boost Regressors for Emotion Analysis of Tweets",
author = "Jabreel, Mohammed and
Moreno, Antonio",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1029/",
doi = "10.18653/v1/S18-1029",
pages = "193--199",
abstract = "This paper describes our system that has been used in Task1 Affect in Tweets. We combine two different approaches. The first one called N-Stream ConvNets, which is a deep learning approach where the second one is XGboost regressor based on a set of embedding and lexicons based features. Our system was evaluated on the testing sets of the tasks outperforming all other approaches for the Arabic version of valence intensity regression task and valence ordinal classification task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jabreel-moreno-2018-eitaka">
<titleInfo>
<title>EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for Emotion Analysis of Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Jabreel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system that has been used in Task1 Affect in Tweets. We combine two different approaches. The first one called N-Stream ConvNets, which is a deep learning approach where the second one is XGboost regressor based on a set of embedding and lexicons based features. Our system was evaluated on the testing sets of the tasks outperforming all other approaches for the Arabic version of valence intensity regression task and valence ordinal classification task.</abstract>
<identifier type="citekey">jabreel-moreno-2018-eitaka</identifier>
<identifier type="doi">10.18653/v1/S18-1029</identifier>
<location>
<url>https://aclanthology.org/S18-1029/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>193</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for Emotion Analysis of Tweets
%A Jabreel, Mohammed
%A Moreno, Antonio
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F jabreel-moreno-2018-eitaka
%X This paper describes our system that has been used in Task1 Affect in Tweets. We combine two different approaches. The first one called N-Stream ConvNets, which is a deep learning approach where the second one is XGboost regressor based on a set of embedding and lexicons based features. Our system was evaluated on the testing sets of the tasks outperforming all other approaches for the Arabic version of valence intensity regression task and valence ordinal classification task.
%R 10.18653/v1/S18-1029
%U https://aclanthology.org/S18-1029/
%U https://doi.org/10.18653/v1/S18-1029
%P 193-199
Markdown (Informal)
[EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for Emotion Analysis of Tweets](https://aclanthology.org/S18-1029/) (Jabreel & Moreno, SemEval 2018)
ACL