@inproceedings{abdou-etal-2018-affecthor,
title = "{A}ffec{T}hor at {S}em{E}val-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in tweets",
author = "Abdou, Mostafa and
Kulmizev, Artur and
Gin{\'e}s i Ametll{\'e}, Joan",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1032",
doi = "10.18653/v1/S18-1032",
pages = "210--217",
abstract = "In this paper we describe our submission to SemEval-2018 Task 1: Affects in Tweets. The model which we present is an ensemble of various neural architectures and gradient boosted trees, and employs three different types of vectorial tweet representations. Furthermore, our system is language-independent and ranked first in 5 out of the 12 subtasks in which we participated, while achieving competitive results in the remaining ones. Comparatively remarkable performance is observed on both the Arabic and Spanish languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abdou-etal-2018-affecthor">
<titleInfo>
<title>AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mostafa</namePart>
<namePart type="family">Abdou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artur</namePart>
<namePart type="family">Kulmizev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joan</namePart>
<namePart type="family">Ginés i Ametllé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe our submission to SemEval-2018 Task 1: Affects in Tweets. The model which we present is an ensemble of various neural architectures and gradient boosted trees, and employs three different types of vectorial tweet representations. Furthermore, our system is language-independent and ranked first in 5 out of the 12 subtasks in which we participated, while achieving competitive results in the remaining ones. Comparatively remarkable performance is observed on both the Arabic and Spanish languages.</abstract>
<identifier type="citekey">abdou-etal-2018-affecthor</identifier>
<identifier type="doi">10.18653/v1/S18-1032</identifier>
<location>
<url>https://aclanthology.org/S18-1032</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>210</start>
<end>217</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in tweets
%A Abdou, Mostafa
%A Kulmizev, Artur
%A Ginés i Ametllé, Joan
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F abdou-etal-2018-affecthor
%X In this paper we describe our submission to SemEval-2018 Task 1: Affects in Tweets. The model which we present is an ensemble of various neural architectures and gradient boosted trees, and employs three different types of vectorial tweet representations. Furthermore, our system is language-independent and ranked first in 5 out of the 12 subtasks in which we participated, while achieving competitive results in the remaining ones. Comparatively remarkable performance is observed on both the Arabic and Spanish languages.
%R 10.18653/v1/S18-1032
%U https://aclanthology.org/S18-1032
%U https://doi.org/10.18653/v1/S18-1032
%P 210-217
Markdown (Informal)
[AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in tweets](https://aclanthology.org/S18-1032) (Abdou et al., SemEval 2018)
ACL