@inproceedings{baziotis-etal-2018-ntua,
title = "{NTUA}-{SLP} at {S}em{E}val-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive {RNN}s and Transfer Learning",
author = "Baziotis, Christos and
Nikolaos, Athanasiou and
Chronopoulou, Alexandra and
Kolovou, Athanasia and
Paraskevopoulos, Georgios and
Ellinas, Nikolaos and
Narayanan, Shrikanth and
Potamianos, Alexandros",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1037/",
doi = "10.18653/v1/S18-1037",
pages = "245--255",
abstract = "In this paper we present deep-learning models that submitted to the SemEval-2018 Task 1 competition: {\textquotedblleft}Affect in Tweets{\textquotedblright}. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E {\textquotedblleft}Multi-Label Emotion Classification{\textquotedblright}, 2nd in Subtask A {\textquotedblleft}Emotion Intensity Regression{\textquotedblright} and achieved competitive results in other subtasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baziotis-etal-2018-ntua">
<titleInfo>
<title>NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Baziotis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athanasiou</namePart>
<namePart type="family">Nikolaos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Chronopoulou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athanasia</namePart>
<namePart type="family">Kolovou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Paraskevopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Ellinas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shrikanth</namePart>
<namePart type="family">Narayanan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Potamianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present deep-learning models that submitted to the SemEval-2018 Task 1 competition: “Affect in Tweets”. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E “Multi-Label Emotion Classification”, 2nd in Subtask A “Emotion Intensity Regression” and achieved competitive results in other subtasks.</abstract>
<identifier type="citekey">baziotis-etal-2018-ntua</identifier>
<identifier type="doi">10.18653/v1/S18-1037</identifier>
<location>
<url>https://aclanthology.org/S18-1037/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>245</start>
<end>255</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning
%A Baziotis, Christos
%A Nikolaos, Athanasiou
%A Chronopoulou, Alexandra
%A Kolovou, Athanasia
%A Paraskevopoulos, Georgios
%A Ellinas, Nikolaos
%A Narayanan, Shrikanth
%A Potamianos, Alexandros
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F baziotis-etal-2018-ntua
%X In this paper we present deep-learning models that submitted to the SemEval-2018 Task 1 competition: “Affect in Tweets”. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E “Multi-Label Emotion Classification”, 2nd in Subtask A “Emotion Intensity Regression” and achieved competitive results in other subtasks.
%R 10.18653/v1/S18-1037
%U https://aclanthology.org/S18-1037/
%U https://doi.org/10.18653/v1/S18-1037
%P 245-255
Markdown (Informal)
[NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning](https://aclanthology.org/S18-1037/) (Baziotis et al., SemEval 2018)
ACL
- Christos Baziotis, Athanasiou Nikolaos, Alexandra Chronopoulou, Athanasia Kolovou, Georgios Paraskevopoulos, Nikolaos Ellinas, Shrikanth Narayanan, and Alexandros Potamianos. 2018. NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning. In Proceedings of the 12th International Workshop on Semantic Evaluation, pages 245–255, New Orleans, Louisiana. Association for Computational Linguistics.