@inproceedings{kotakonda-etal-2018-iit,
title = "{IIT} {D}elhi at {S}em{E}val-2018 Task 1 : Emotion Intensity Prediction",
author = "Kotakonda, Bhaskar and
Gowda, Prashanth and
Lall, Brejesh",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1051",
doi = "10.18653/v1/S18-1051",
pages = "339--344",
abstract = "This paper discusses the experiments performed for predicting the emotion intensity in tweets using a generalized supervised learning approach. We extract 3 kind of features from each of the tweets - one denoting the sentiment and emotion metrics obtained from different sentiment lexicons, one denoting the semantic representation of the word using dense representations like Glove, Word2vec and finally the syntactic information through POS N-grams, Word clusters, etc. We provide a comparative analysis of the significance of each of these features individually and in combination tested over standard regressors avaliable in scikit-learn. We apply an ensemble of these models to choose the best combination over cross validation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kotakonda-etal-2018-iit">
<titleInfo>
<title>IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhaskar</namePart>
<namePart type="family">Kotakonda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prashanth</namePart>
<namePart type="family">Gowda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brejesh</namePart>
<namePart type="family">Lall</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper discusses the experiments performed for predicting the emotion intensity in tweets using a generalized supervised learning approach. We extract 3 kind of features from each of the tweets - one denoting the sentiment and emotion metrics obtained from different sentiment lexicons, one denoting the semantic representation of the word using dense representations like Glove, Word2vec and finally the syntactic information through POS N-grams, Word clusters, etc. We provide a comparative analysis of the significance of each of these features individually and in combination tested over standard regressors avaliable in scikit-learn. We apply an ensemble of these models to choose the best combination over cross validation.</abstract>
<identifier type="citekey">kotakonda-etal-2018-iit</identifier>
<identifier type="doi">10.18653/v1/S18-1051</identifier>
<location>
<url>https://aclanthology.org/S18-1051</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>339</start>
<end>344</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction
%A Kotakonda, Bhaskar
%A Gowda, Prashanth
%A Lall, Brejesh
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F kotakonda-etal-2018-iit
%X This paper discusses the experiments performed for predicting the emotion intensity in tweets using a generalized supervised learning approach. We extract 3 kind of features from each of the tweets - one denoting the sentiment and emotion metrics obtained from different sentiment lexicons, one denoting the semantic representation of the word using dense representations like Glove, Word2vec and finally the syntactic information through POS N-grams, Word clusters, etc. We provide a comparative analysis of the significance of each of these features individually and in combination tested over standard regressors avaliable in scikit-learn. We apply an ensemble of these models to choose the best combination over cross validation.
%R 10.18653/v1/S18-1051
%U https://aclanthology.org/S18-1051
%U https://doi.org/10.18653/v1/S18-1051
%P 339-344
Markdown (Informal)
[IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction](https://aclanthology.org/S18-1051) (Kotakonda et al., SemEval 2018)
ACL