@inproceedings{nagoudi-2018-arb,
    title = "{ARB}-{SEN} at {S}em{E}val-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Prediction in {A}rabic Tweets",
    author = "Nagoudi, El Moatez Billah",
    editor = "Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      May, Jonathan  and
      Shutova, Ekaterina  and
      Bethard, Steven  and
      Carpuat, Marine",
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1055/",
    doi = "10.18653/v1/S18-1055",
    pages = "364--368",
    abstract = "This article describes our proposed Arabic Sentiment Analysis system named ARB-SEN. This system is designed for the International Workshop on Semantic Evaluation 2018 (SemEval-2018), Task1: Affect in Tweets. ARB-SEN proposes two supervised models to estimate the sentiment intensity in Arabic tweets. Both models use a set of features including sentiment lexicon, negation, word embedding and emotion symbols features. Our system combines these features to assist the sentiment analysis task. ARB-SEN system achieves a correlation score of 0.720, ranking 6th among all participants in the valence intensity regression (V-reg) for the Arabic sub-task organized within the SemEval 2018 evaluation campaign."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nagoudi-2018-arb">
    <titleInfo>
        <title>ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Prediction in Arabic Tweets</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">El</namePart>
        <namePart type="given">Moatez</namePart>
        <namePart type="given">Billah</namePart>
        <namePart type="family">Nagoudi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This article describes our proposed Arabic Sentiment Analysis system named ARB-SEN. This system is designed for the International Workshop on Semantic Evaluation 2018 (SemEval-2018), Task1: Affect in Tweets. ARB-SEN proposes two supervised models to estimate the sentiment intensity in Arabic tweets. Both models use a set of features including sentiment lexicon, negation, word embedding and emotion symbols features. Our system combines these features to assist the sentiment analysis task. ARB-SEN system achieves a correlation score of 0.720, ranking 6th among all participants in the valence intensity regression (V-reg) for the Arabic sub-task organized within the SemEval 2018 evaluation campaign.</abstract>
    <identifier type="citekey">nagoudi-2018-arb</identifier>
    <identifier type="doi">10.18653/v1/S18-1055</identifier>
    <location>
        <url>https://aclanthology.org/S18-1055/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>364</start>
            <end>368</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Prediction in Arabic Tweets
%A Nagoudi, El Moatez Billah
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F nagoudi-2018-arb
%X This article describes our proposed Arabic Sentiment Analysis system named ARB-SEN. This system is designed for the International Workshop on Semantic Evaluation 2018 (SemEval-2018), Task1: Affect in Tweets. ARB-SEN proposes two supervised models to estimate the sentiment intensity in Arabic tweets. Both models use a set of features including sentiment lexicon, negation, word embedding and emotion symbols features. Our system combines these features to assist the sentiment analysis task. ARB-SEN system achieves a correlation score of 0.720, ranking 6th among all participants in the valence intensity regression (V-reg) for the Arabic sub-task organized within the SemEval 2018 evaluation campaign.
%R 10.18653/v1/S18-1055
%U https://aclanthology.org/S18-1055/
%U https://doi.org/10.18653/v1/S18-1055
%P 364-368
Markdown (Informal)
[ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Prediction in Arabic Tweets](https://aclanthology.org/S18-1055/) (Nagoudi, SemEval 2018)
ACL