@inproceedings{wang-pedersen-2018-umdsub,
title = "{UMDS}ub at {S}em{E}val-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural Network on Subword Embedding",
author = "Wang, Zhenduo and
Pedersen, Ted",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1060",
doi = "10.18653/v1/S18-1060",
pages = "395--399",
abstract = "This paper describes the UMDSub system that participated in Task 2 of SemEval-2018. We developed a system that predicts an emoji given the raw text in a English tweet. The system is a Multi-channel Convolutional Neural Network based on subword embeddings for the representation of tweets. This model improves on character or word based methods by about 2{\%}. Our system placed 21st of 48 participating systems in the official evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-pedersen-2018-umdsub">
<titleInfo>
<title>UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural Network on Subword Embedding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenduo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ted</namePart>
<namePart type="family">Pedersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the UMDSub system that participated in Task 2 of SemEval-2018. We developed a system that predicts an emoji given the raw text in a English tweet. The system is a Multi-channel Convolutional Neural Network based on subword embeddings for the representation of tweets. This model improves on character or word based methods by about 2%. Our system placed 21st of 48 participating systems in the official evaluation.</abstract>
<identifier type="citekey">wang-pedersen-2018-umdsub</identifier>
<identifier type="doi">10.18653/v1/S18-1060</identifier>
<location>
<url>https://aclanthology.org/S18-1060</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>395</start>
<end>399</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural Network on Subword Embedding
%A Wang, Zhenduo
%A Pedersen, Ted
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F wang-pedersen-2018-umdsub
%X This paper describes the UMDSub system that participated in Task 2 of SemEval-2018. We developed a system that predicts an emoji given the raw text in a English tweet. The system is a Multi-channel Convolutional Neural Network based on subword embeddings for the representation of tweets. This model improves on character or word based methods by about 2%. Our system placed 21st of 48 participating systems in the official evaluation.
%R 10.18653/v1/S18-1060
%U https://aclanthology.org/S18-1060
%U https://doi.org/10.18653/v1/S18-1060
%P 395-399
Markdown (Informal)
[UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural Network on Subword Embedding](https://aclanthology.org/S18-1060) (Wang & Pedersen, SemEval 2018)
ACL