@inproceedings{effrosynidis-etal-2018-duth,
title = "{DUTH} at {S}em{E}val-2018 Task 2: Emoji Prediction in Tweets",
author = "Effrosynidis, Dimitrios and
Peikos, Georgios and
Symeonidis, Symeon and
Arampatzis, Avi",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1074/",
doi = "10.18653/v1/S18-1074",
pages = "466--469",
abstract = "This paper describes the approach that was developed for SemEval 2018 Task 2 (Multilingual Emoji Prediction) by the DUTH Team. First, we employed a combination of pre-processing techniques to reduce the noise of tweets and produce a number of features. Then, we built several N-grams, to represent the combination of word and emojis. Finally, we trained our system with a tuned LinearSVC classifier. Our approach in the leaderboard ranked 18th amongst 48 teams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="effrosynidis-etal-2018-duth">
<titleInfo>
<title>DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitrios</namePart>
<namePart type="family">Effrosynidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Peikos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Symeon</namePart>
<namePart type="family">Symeonidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Arampatzis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the approach that was developed for SemEval 2018 Task 2 (Multilingual Emoji Prediction) by the DUTH Team. First, we employed a combination of pre-processing techniques to reduce the noise of tweets and produce a number of features. Then, we built several N-grams, to represent the combination of word and emojis. Finally, we trained our system with a tuned LinearSVC classifier. Our approach in the leaderboard ranked 18th amongst 48 teams.</abstract>
<identifier type="citekey">effrosynidis-etal-2018-duth</identifier>
<identifier type="doi">10.18653/v1/S18-1074</identifier>
<location>
<url>https://aclanthology.org/S18-1074/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>466</start>
<end>469</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets
%A Effrosynidis, Dimitrios
%A Peikos, Georgios
%A Symeonidis, Symeon
%A Arampatzis, Avi
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F effrosynidis-etal-2018-duth
%X This paper describes the approach that was developed for SemEval 2018 Task 2 (Multilingual Emoji Prediction) by the DUTH Team. First, we employed a combination of pre-processing techniques to reduce the noise of tweets and produce a number of features. Then, we built several N-grams, to represent the combination of word and emojis. Finally, we trained our system with a tuned LinearSVC classifier. Our approach in the leaderboard ranked 18th amongst 48 teams.
%R 10.18653/v1/S18-1074
%U https://aclanthology.org/S18-1074/
%U https://doi.org/10.18653/v1/S18-1074
%P 466-469
Markdown (Informal)
[DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets](https://aclanthology.org/S18-1074/) (Effrosynidis et al., SemEval 2018)
ACL
- Dimitrios Effrosynidis, Georgios Peikos, Symeon Symeonidis, and Avi Arampatzis. 2018. DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets. In Proceedings of the 12th International Workshop on Semantic Evaluation, pages 466–469, New Orleans, Louisiana. Association for Computational Linguistics.