@inproceedings{basile-lino-2018-tajjeb,
title = "{TAJJEB} at {S}em{E}val-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction",
author = "Basile, Angelo and
Lino, Kenny W.",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1075/",
doi = "10.18653/v1/S18-1075",
pages = "470--476",
abstract = "Emojis are widely used on social media andunderstanding their meaning is important forboth practical purposes (e.g. opinion mining,sentiment detection) and theoretical purposes(e.g. how different L1 speakers use them, dothey have some syntax?); this paper presents aset of experiments that aim to predict a singleemoji from a tweet. We built different mod-els and we found that the test results are verydifferent from the validation results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="basile-lino-2018-tajjeb">
<titleInfo>
<title>TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Angelo</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenny</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Lino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Emojis are widely used on social media andunderstanding their meaning is important forboth practical purposes (e.g. opinion mining,sentiment detection) and theoretical purposes(e.g. how different L1 speakers use them, dothey have some syntax?); this paper presents aset of experiments that aim to predict a singleemoji from a tweet. We built different mod-els and we found that the test results are verydifferent from the validation results.</abstract>
<identifier type="citekey">basile-lino-2018-tajjeb</identifier>
<identifier type="doi">10.18653/v1/S18-1075</identifier>
<location>
<url>https://aclanthology.org/S18-1075/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>470</start>
<end>476</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction
%A Basile, Angelo
%A Lino, Kenny W.
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F basile-lino-2018-tajjeb
%X Emojis are widely used on social media andunderstanding their meaning is important forboth practical purposes (e.g. opinion mining,sentiment detection) and theoretical purposes(e.g. how different L1 speakers use them, dothey have some syntax?); this paper presents aset of experiments that aim to predict a singleemoji from a tweet. We built different mod-els and we found that the test results are verydifferent from the validation results.
%R 10.18653/v1/S18-1075
%U https://aclanthology.org/S18-1075/
%U https://doi.org/10.18653/v1/S18-1075
%P 470-476
Markdown (Informal)
[TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction](https://aclanthology.org/S18-1075/) (Basile & Lino, SemEval 2018)
ACL