@inproceedings{zanzotto-santilli-2018-syntnn,
title = "{S}ynt{NN} at {S}em{E}val-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons",
author = "Zanzotto, Fabio Massimo and
Santilli, Andrea",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1076/",
doi = "10.18653/v1/S18-1076",
pages = "477--481",
abstract = "In this paper, we present SyntNN as a way to include traditional syntactic models in multilayer neural networks used in the task of Semeval Task 2 of emoji prediction. The model builds on the distributed tree embedder also known as distributed tree kernel. Initial results are extremely encouraging but additional analysis is needed to overcome the problem of overfitting."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zanzotto-santilli-2018-syntnn">
<titleInfo>
<title>SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">Massimo</namePart>
<namePart type="family">Zanzotto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Santilli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present SyntNN as a way to include traditional syntactic models in multilayer neural networks used in the task of Semeval Task 2 of emoji prediction. The model builds on the distributed tree embedder also known as distributed tree kernel. Initial results are extremely encouraging but additional analysis is needed to overcome the problem of overfitting.</abstract>
<identifier type="citekey">zanzotto-santilli-2018-syntnn</identifier>
<identifier type="doi">10.18653/v1/S18-1076</identifier>
<location>
<url>https://aclanthology.org/S18-1076/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>477</start>
<end>481</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons
%A Zanzotto, Fabio Massimo
%A Santilli, Andrea
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F zanzotto-santilli-2018-syntnn
%X In this paper, we present SyntNN as a way to include traditional syntactic models in multilayer neural networks used in the task of Semeval Task 2 of emoji prediction. The model builds on the distributed tree embedder also known as distributed tree kernel. Initial results are extremely encouraging but additional analysis is needed to overcome the problem of overfitting.
%R 10.18653/v1/S18-1076
%U https://aclanthology.org/S18-1076/
%U https://doi.org/10.18653/v1/S18-1076
%P 477-481
Markdown (Informal)
[SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons](https://aclanthology.org/S18-1076/) (Zanzotto & Santilli, SemEval 2018)
ACL