@inproceedings{vu-etal-2018-nihrio,
    title = "{NIHRIO} at {S}em{E}val-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in {T}witter",
    author = "Vu, Thanh  and
      Nguyen, Dat Quoc  and
      Vu, Xuan-Son  and
      Nguyen, Dai Quoc  and
      Catt, Michael  and
      Trenell, Michael",
    editor = "Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      May, Jonathan  and
      Shutova, Ekaterina  and
      Bethard, Steven  and
      Carpuat, Marine",
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1085/",
    doi = "10.18653/v1/S18-1085",
    pages = "525--530",
    abstract = "This paper describes our NIHRIO system for SemEval-2018 Task 3 ``Irony detection in English tweets.'' We propose to use a simple neural network architecture of Multilayer Perceptron with various types of input features including: lexical, syntactic, semantic and polarity features. Our system achieves very high performance in both subtasks of binary and multi-class irony detection in tweets. In particular, we rank at least fourth using the accuracy metric and sixth using the F1 metric. Our code is available at: \url{https://github.com/NIHRIO/IronyDetectionInTwitter}"
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vu-etal-2018-nihrio">
    <titleInfo>
        <title>NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Thanh</namePart>
        <namePart type="family">Vu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dat</namePart>
        <namePart type="given">Quoc</namePart>
        <namePart type="family">Nguyen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xuan-Son</namePart>
        <namePart type="family">Vu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dai</namePart>
        <namePart type="given">Quoc</namePart>
        <namePart type="family">Nguyen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Michael</namePart>
        <namePart type="family">Catt</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Michael</namePart>
        <namePart type="family">Trenell</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes our NIHRIO system for SemEval-2018 Task 3 “Irony detection in English tweets.” We propose to use a simple neural network architecture of Multilayer Perceptron with various types of input features including: lexical, syntactic, semantic and polarity features. Our system achieves very high performance in both subtasks of binary and multi-class irony detection in tweets. In particular, we rank at least fourth using the accuracy metric and sixth using the F1 metric. Our code is available at: https://github.com/NIHRIO/IronyDetectionInTwitter</abstract>
    <identifier type="citekey">vu-etal-2018-nihrio</identifier>
    <identifier type="doi">10.18653/v1/S18-1085</identifier>
    <location>
        <url>https://aclanthology.org/S18-1085/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>525</start>
            <end>530</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter
%A Vu, Thanh
%A Nguyen, Dat Quoc
%A Vu, Xuan-Son
%A Nguyen, Dai Quoc
%A Catt, Michael
%A Trenell, Michael
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F vu-etal-2018-nihrio
%X This paper describes our NIHRIO system for SemEval-2018 Task 3 “Irony detection in English tweets.” We propose to use a simple neural network architecture of Multilayer Perceptron with various types of input features including: lexical, syntactic, semantic and polarity features. Our system achieves very high performance in both subtasks of binary and multi-class irony detection in tweets. In particular, we rank at least fourth using the accuracy metric and sixth using the F1 metric. Our code is available at: https://github.com/NIHRIO/IronyDetectionInTwitter
%R 10.18653/v1/S18-1085
%U https://aclanthology.org/S18-1085/
%U https://doi.org/10.18653/v1/S18-1085
%P 525-530
Markdown (Informal)
[NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter](https://aclanthology.org/S18-1085/) (Vu et al., SemEval 2018)
ACL