
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 600–606
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from
Tweets via Machine Learning and Deep Learning Methods

Zhenghang Yin1, Feixiang Wang1, Man Lan1,2, Wenting Wang3

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
3Alibaba Group

{10142130151,51151201049}@stu.ecnu.edu.cn, mlan@cs.ecnu.edu.cn,
nantiao.wwt@alibaba-inc.com

Abstract

The paper describes our submissions to task
3 in SemEval 2018. There are two subtasks:
Subtask A is a binary classification task to de-
termine whether a tweet is ironic, and Subtask
B is a fine-grained classification task including
four classes. To address them, we explored su-
pervised machine learning method alone and
in combination with neural networks.

1 Introduction

Irony, also known as sarcasm, refers to the use of
words and sentences, whose intended meanings
contrary to their literal meanings. Modeling irony
has a large potential for applications in various
research areas, so SemEval2018-Task3 (Hee
et al.) aims to classify irony into different classes.

There are two subtasks. In subtask A, when giv-
en a tweet, the classifier should predict whether
the tweet is ironic or non-ironic, and in subtask
B, the ironic class is further divided into another
three categories, i.e., irony by Polarity contrast,
by Situational and Other verbal irony.

Polarity contrast irony represents the tweets
containing an expression whose polarity (positive,
negative) is inverted between the literal and the
intended meaning. Situational irony stands for
the ones which don’t contain explicit polarity
contrast. However, the events or results described
in them are contrary to the desired or expected
common knowledge. Other verbal irony tweets
also don’t contain any explicit polarity contrast,
but they can’t be classified into the Situational
irony. Finally, non-ironic contains instances
which are clearly not ironic, or lack adequate
context to be sure that they are ironic.

In the remaining of the paper, section 2
describes our system in details. Section 3 reports
datasets, experiments and results discussions.
Finally, Section 4 concludes our work.

2 System Description

In both subtasks we used supervised machine
learning to model the irony in datasets. Moreover,
we explored neural networks in subtask A.

• In subtask A, we built a binary classification
system to make predictions (see in 2.2.1).
Then, we combine it with a Bi-LSTM neural
networks(see in 2.2.2).

• In subtask B, we used two machine learning
systems to train and evaluate.

1. 4-class classification system: We made
use of classifier directly itself to make
4-class predictions.

2. 4 binary-classification system: We de-
signed a two-step system as follows:

– Step 1 The entire problem was
regarded as 4 binary-classification
problems. Each tweet would be
trained and evaluated within 4
classes, and 4 confidence values
would be returned.

– Step 2 The classifier would allocate
each tweet with a label gaining the
highest confidence, and then made
evaluation.

2.1 Feature Engineering
4 types of features were designed to extract effec-
tive information from the given tweets.

2.1.1 Linguistic-informed Features
• Word N-grams We extracted word n-grams

features (n = 1, 2, 3) from tweets. To
accomplish that, we used TweetTokenizer
from NLTK tools (Bird et al., 2009).
Otherwise, N-grams features with the use of
Relevant Frequency (RF) (Lan et al., 2009)
were also applied to this system.

600



• NER There are different types of words in
tweets. NER feature can effectively express
aforesaid information. The 12 types (i.e.,
DURATION, SET, NUMBER, LOCATION,
PERSON, ORGANIATION, PERCENT,
MISC, ORDINAL, TIME, DATE, MONEY)
named entities are labeled by Stanford
CoreNLP tools (Manning et al., 2014). We
used a 12-dimensions binary feature to
indicate the entities in tweets.

2.1.2 Word Embedding Features

A lot of recent studies on NLP applications were
reported to have good performance through using
word vectors, such as document classification
(Sebastiani, 2002) and question answering (Lan
et al., 2016). In our work, two widely-used word
embedding features were adopted, respectively
Google Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014).

For Word2Vec, a dictionary (Available in
Google1.) with 31622 words and 300 dimensions
was applied. For GloVe, we used data from the
dictionary with 2196017 words and 300
dimensions (glove.840B.300d, available in
GloVe2).

2.1.3 Sentiment Lexicon Feature (SentiLexi)

Eight sentiment lexicons were used to extract
sentiment lexicon features in our work. We
adopted the following 8 sentiment features: Bing
Liu lexicon3, General Inquirer lexicon4,
IMD-B5, MPQA6, NRC Emotion Sentiment
Lexicon7, AFINN8, NRC Hashtag Sentiment
Lexicon9, and NRC Sentiment140 Lexicon10.

2.1.4 Tweet domain Features

We collected tweet related features, and used uni-
gram to imply if a tweet contained such informa-
tion.

1https://code.google.com/archive/p/word2vec
2https://nlp.stanford.edu/projects/glove
3http://www.cs.uic.edu/liub/FBS/sentiment-

analysis.html#lecixon
4http://www.wjh.harbard.edu/inquirer/homecat.htm
5http://www.calweb/org/anthology/S13-2067
6http://mpqa.cs.pitt.edu
7http://www.saifmohammad.com/WebPages/lexicons.html
8http://www2.imm.dtu.dk/pubdb/views/publication

details.php?id=6010
9http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
10http://help.sentiment140.com/for-students

• Hashtags All the tokens begin with “#” sym-
bol are called hashtags. We extracted all the
hashtags, removed its “#” symbol and built
unigram features for them.

• Word N-grams in Hashtags We exploited
hashtags by a small tool WordSegment11 to
cut linked-together hashtags into a series of
words, like ilikemonday into [‘i’, ‘like’,
‘monday’].

• Punctuation Online users often use emotion
symbols (i.e., ! and ?) to express strongly
feelings. Hence we extracted a 7-dimension
binary features by recording the following
rules, they were: 1) if exclamations (!) exist;
2) if questions (?) exist; 3) if multiple ! exist
(i.e. !!!); 4) if multiple ? exist (i.e. ???); 5)
if alternative appearances of ! and ? exist
(i.e. !? and ?!); 6) if the last token is ! and 7)
if the last token is ?.

• Emoticon: We collected 67 emotions labeled
with positive and negative scores from the In-
ternet12, and used a 67-dimension binary fea-
ture to record the sentiment score of the emo-
tion in tweets.

• Elongated Words Feature In the sentence
“Ahhaaaaaaa, that’s sooooo funny!”,
Ahhaa.. and so.. are the use of elongated
words. The existence of these words will
lead to the overfitting in unigram features.
So we designed a feature to handle them.

In our work, elongated-word feature was de-
fined as the word which has characters re-
peated for 3-11 times. We captured and han-
dled them by using regular expression.

2.2 Classifiers and Models
2.2.1 Machine Learning Algorithm
In both subtasks, we used following supervised
machine learning algorithms to train the model:

• Logistic Regression (LR) implemented in Li-
blinear (Fan et al., 2008).

• DecisionTree, Naı̈veBayes, KNN, Random
Forest, LR, SVM, SGD and AdaBoost all
implemented in scikit-learn tools (Pedregosa
et al., 2011).

11https://pypi.python.org/pypi/wordsegment
12https://github.com/haierlord/resource/blob/master/

Emoticon.txt

601



(a) Model submitted to contest (b) Model Explored after Contest with
Attention and Additional Drop Out

Figure 1: The architecture of our LSTM models. (a) The NN model submitted to Task A, which only incorporates
a drop out layer after bi-lstm layer. (b) The NN model explored after contest, which adds attention layer and
incorporates additional drop out at both embedding and lstm layers.

2.2.2 Deep Learning
Next, we explored neural networks in subtask A.
We modeled all the tweets data through a
Bi-LSTM network. The general architecture of
the model was depicted in Figure 1.

• Input and Embedding Layer: Each tweet
was preprocessed by normalizing hyper links
and mentions to someurl and someuser as de-
scribed in 2.1.1 and extracting word n-grams
in hashtags as described in 2.1.4. Then the
tweet was converted into a vector and padded
to an equal length (or truncated if the tweet is
longer than the pre-defined length). The input
vector was fed to the embedding layer (i.e.
pre-trained glove.twitter.27B vectors), which
converted each word into a distributional vec-
tor.

• Bi-LSTM Layer: We used bi-directional L-
STMs to model the input sequence. In the
bidirectional architecture, two layers of hid-
den nodes from two LSTMs captured com-
positional semantics from both forward and
backward directions of the word sequence.

• Attention Layer: We add attention layer to
model the weights of input words follow
(Raffel and Ellis, 2016), i.e. learning the
weights of hidden states at each time stamp,

then computing the sentence representation
via a weighted sum.

• Output Layer: The output of Bi-LSTM was
passed to a fully connected (FC) layer,
which produced a higher order feature set
easily separable for 2 classes. Finally, a
softmax layer was added on top of the fully
connected layer. The network was trained by
minimizing the binary cross-entropy error
with ADAM (Kingma and Ba, 2015) for
parameter optimization.

3 Experiments and Results

3.1 Datasets
The statistics of the datasets provided by SemEval
2018 task 3 are shown in Table 1.

Subtask A Label 0(%) Label 1(%) - -
train 1,923 (50.2%) 1,911 (49.8%) - -
test 473 (60.3%) 311 (39.7%) - -

Subtask B Label 0(%) Label 1(%) Label 2(%) Label 3(%)
train 1,923 (50.2%) 1,390 (36.3%) 316 (8.2%) 205 (5.3%)
test 473 (60.3%) 164 (20.9%) 85 (10.8%) 62 (7.9%)

Table 1: Statistics of datasets in train and test data.
Label 0 stands for non-ironic, label 1 in subtask A is
ironic, label 1, 2, 3 in subtask B is respectively polarity
contrast irony, situational irony and other verbal irony.

3.2 Evaluation Metric
The official evaluation criterion is as follow:

602



• For subtask A, only F1-score of Ironic class
is used.

F = Fpos

• For subtask B, macro-averaged F1-score cal-
culated among all four classes is used.

Fmacro =
Fpolar cont+Fsenti+Fother+Fnon

4

3.3 Experiments on training data
3.3.1 Subtask A: Irony Detection
We used a series of features and explored different
machine learning algorithms, in combination with
neural networks, in subtask A.

Machine Learning
The count of the train data was only 3,834 and

no dev datasets were provided. To fully exploit
these data, we used 10-fold cross-validation with
data shuffling. The major feature selection work
was done with LibLinear L2-regularized logistic
regression (LibLinear LR).

We used the following features in Table 2 as the
baseline features. Since the cross validation oper-
ations were done with data shuffling, some fluc-
tuations in result might exist. From the table it
can be observed that all these features can make
contributions to the classifier.

Features Fpos,macro

GloVe 0.6314
.+Word2Vec 0.6336 (+0.0022)
.+Punction 0.6382 (+0.0046)
.+ners 0.6406 (+0.0024)
.+Sentiment Lexicon 0.6432 (+0.0026)
.+Emoticon 0.6462 (+0.0030)
.+Elongated 0.6465 (+0.0003)

Table 2: Performance of different features on cross-
validation shuffling data test. “.+” means to add current
features to the previous feature set. The numbers in the
parentheses are the performance increments compared
with the previous results.

Then we added three other features: Word
N-grams, Hashtags and Hashtag unigrams.
Each feature had two versions, with or without
Relevant frequency (RF). Simultaneously, we
set different word frequency when building
lexicon for these features, from frequency
threshold 1 to 5. In order to choose features
which can improve the performance best, we used
Hill Climbing method.

Hill Climbing is a method which can automati-
cally extract the best features from a set of given
features. Its principle is as follows:

1. Given a Candidate Feature set, traverse
each feature and move the feature producing
the best performance into Best Feature set.

2. Traverse the remaining features in
Candidate Feature set, ensemble each one
with Best Feature set to train the model. If
one feature can lead to better performance
than before, move it to Best Feature set.

3. Repeat step 3 until that Candidate Feature
set is empty.

4. The best feature combination can be obtained
by traversing Best Feature set according to
the insertion order of each feature.

After running Hill Climbing 5 times and extract-
ed the features from each first line, we selected 7
features, as shown in Table 3.

Feature Threshold With RF
Trigram 4 Yes
Bigram 2 Yes
Hashtag 2 Yes
Hashtag 1 Yes
Hashtag unigram 1 No
Trigram 2 Yes
Unigram 2 Yes

Table 3: The results of hill climbing.

Algorithms Fpos,macro

SkLearn Naı̈veBayes 0.7111
Sklearn LR 0.6953
LibLinear LR 0.6947

Table 4: Performance of three best learning algorithms.

Then we explored the performance of different
learning algorithms. Table 4 lists the comparison
of best three supervised learning algorithms with
all above features.

Finally, we made ensemble of three algorithms
in Table 4. The ensemble score was 0.6982.

Neural Networks
In our LSTM framework, the dimension of

word vector was set to 100 and the hidden layers
for both LSTM and FC layers were set to 256.
The drop out rate was set to 0.2 for preventing
overfitting. 10% of the training data were
randomly selected as validation set. The best
model during training was used in test evaluation
stage. We implement the framework based on
Tensor-flow (Abadi et al., 2016) and Keras13.

13https://keras.io/

603



seed precision recall f1-score
6815 seed3 0.683908 0.639785 0.661111
6867 seed7 0.705036 0.553672 0.620253
6684 seed11 0.658654 0.709845 0.683292
6789 seed13 0.668142 0.758794 0.710588
6658 seed23 0.692308 0.574468 0.627907

Table 5: Performance of partial neural networks on
subtask A on train and dev datasets.

The performance results on train datasets are
listed in Table 5, and the average is about 0.66.

Ensemble of Machine Learning and Neural
Networks

The average performance of machine learning
and neural networks were respectively 0.69 and
0.66. We ensembled different results of neural
network and of machine learning. Here we used 4
algorithms, i.e., Scikit-Learn’s Naı̈veBayes, LR,
SVM and LibLinear’s LR, to avoid that label 0
and label 1 were voted same times.

During the ensemble, we also tried another s-
trategy. Since we wanted to higher the recall value
of positive labels, we ensembled only the data pre-
dicted as “label 0” by neural networks. For those
“label 1” data, we remained their original labels.
The results of this strategy will be discussed in 3.4.

3.3.2 Subtask B: Irony Classification
When handling subtask B, we used only machine
learning. We conducted two steps in subtask B.

In the first step, the average f1-macro score is
between 0.42-0.43. Table 6 shows how much
each class is graded, the f1-scores of label 2 and
3 are much lower than that of label 0 and 1. This
is caused by imbalance in data distribution.

Features f1-score of
Label 0 Label 1 Label 2 of Label 3

Other features 0.712455 0.649360 0.254167 0.066390
.+URL Unigram T1 0.710811 0.421364 0.282700 0.074074
.+URL Unigram T2 0.712627 0.655994 0.280922 0.105691
.+URL Unigram T3 0.703121 0.648396 0.241015 0.067511
.+URL Unigram T4 0.703121 0.650534 0.280922 0.074689
.+URL Unigram T5 0.709412 0.649573 0.278119 0.075630

Table 6: The f1-scores of each label in subtask B.
Here label 0 represents for Non-ironic, 1 for Polarity
contrast, 2 for Situational irony, 3 for Other verbal
irony.

In the second step, to solve the problem of im-
balance in data distribution, we enlarged the data
size of label 2 and 3. Label 2 was expanded 6
times, and label 3 was expanded to 10 times. Then
we ensembled multi-algorithms. Each algorithm
would perform 4 binary-classifications successive-

ly. Finally, we used Scikit-Learn LR for label 0, 1,
2, and Scikit-Learn SVM for label 3. Results are
listed in Table 7.

Label precision recall f1-score
0 0.669960 0.705148 0.687104
1 0.656558 0.623022 0.639350
2 0.343333 0.325949 0.334416
3 0.167539 0.156098 0.161616

Average score
- 0.459348 0.452554 0.455622

Table 7: The performances of using 4 binary
classifications

However, when generating test files, the output
results fluctuated remarkably. At last, we didn’t
hand in the output result generated by step 2.

3.4 Results on Test Data

Subtask System f1-score (%)

Subtask A

ECNU 0.5931 (20)
THU NGN 0.7054 (1)
NTUA-SLP 0.6719 (2)
WLV 0.6500 (3)

Subtask B

ECNU 0.2326 (30)
UCDCC 0.5074 (1)
NTUA-SLP 0.4959 (2)
THU NGN 0.4947 (3)

Table 8: Performance of our systems and top-ranked
teams on both two subtasks. The numbers in the
parentheses are the official rankings. The evaluation
metrics in mentioned in 3.2.

Table 8 shows the results of our system and the
top-ranked systems provided by the official. Com-
pared with the top ranked systems, there’s so much
room for improvement in our work. There are sev-
eral possible reasons for this.

• First, the overfitting problems is very seri-
ous. The scores during Training and dev pe-
riod and test period differed significantly. It
will be discussed in 3.5.

• Second, possibly the features failed to ex-
tract useful information from the test da-
ta Unlike Word N-Grams, some features, like
hashtag, the probability of the same hashtag
or matching words appearing in both test files
and training files is quite low.

3.5 Supplement results beside the contest
3.5.1 Ensemble of Machine Learning and

Neural Networks on subtask A
This is the performance of machine learning algo-
rithms on subtask A after the contest.

604



Model seed x precision recall f1-score (%)
NN 6815 sd3 0.580282 0.662379 0.618619 (12)
NN 6867 sd7 0.626415 0.533762 0.576389 (27)
NN 6684 sd11 0.532895 0.781350 0.633638 (6)
NN 6789 sd13 0.529279 0.755627 0.622517 (10)
NN+additional dropout 6867 sd7 0.587393 0.65916 0.621212 (11)
NN+additional dropout 6684 sd11 0.525000 0.810289 0.637168 (6)
NN+additional dropout 6789 sd13 0.537079 0.768489 0.632275 (6)
NN+additional dropout+attention 6815 sd3 0.537383 0.739550 0.622463 (10)
NN+additional dropout+attention 6867 sd7 0.529870 0.655949 0.5862070 (24)
NN+additional dropout+attention 6684 sd11 0.544118 0.7138264 0.617524 (13)
NN+additional dropout+attention 6789 sd13 0.574850 0.6173633 0.595349 (19)

Table 9: Performance of pure neural networks on subtask A on test datasets. The number in parentheses is the
position of this result if submitted. Performances in Group ‘NN’ are based on Figure 1(a); Performances in
Group ‘NN+more dropout’ are based on Figure 1(a) with additional drop out settings; and Performances in Group
‘NN+more dropout+attention’ are based on Figure 1(b).

Ensemble precision recall f1-score (%)
TOP3 0.400000 0.553055 0.464238 (37)
4+NN, en0 0.450777 0.839228 0.586517 (24)
4+NN, en0 0.452340 0.839228 0.587838 (23)
4+NN 0.404651 0.559486 0.469636 (35)
4+NN, en0 0.493590 0.742765 0.593068 (20)

Table 10: Performance of ensemble on machine
learning and neural networks on subtask A and test
datasets. The numbers in parentheses represent
positions in the official ranking if the result is
submitted. The last record is the same as ECNU’s.

In Table 10, TOP3 means the ensemble of 3
best algorithms on train datasets. The 4+NN
means using 4 best machine learning algorithms
and ensemble them with the results of neural
networks. en0 means using the other strategy
mentioned in 3.3.1. Hence, the ensemble data
using the other strategy enjoys a particular high
recall value. Nevertheless, the performance of
these results differ greatly that on train datasets.

seed precision recall f1-score (%)
6815 sd3 0.580282 0.662379 0.618619 (12)
6867 sd7 0.626415 0.533762 0.576389 (27)
6684 sd11 0.532895 0.781350 0.633638 (6)
6789 sd13 0.529279 0.755627 0.622517 (10)
6658 sd23 0.601911 0.607717 0.604800 (17)

Table 11: Performance of pure neural networks. The
numbers in parentheses represent positions in the
official ranking if the result is submitted.

In Table 11, the average of f1-scores on pure
neural networks’ results is about 0.61. This phe-
nomenon indicates that in our work the training
of supervised machine learning appeared to have
been overfitted.

3.5.2 Neural Networks on subtask A

In Table 9 the average of f1-scores on pure neural
networks’ results are 0.61, 0.62 and 0.60 for three
Groups respectively.

This phenomenon indicates that in our work, the
training of supervised machine learning appeared
to be overfitted. Moreover, turn on drop out set-
tings in more neural network layers can further re-
duce overfitting.

However, our attempt of further incorporating
attention layer brought negative affect on subtask
A’s performance. This may suggest the weighted
sum of hidden states probably is not a good repre-
sentation of the sentence for irony detection.

4 Conclusion

In this paper, we explored supervised machine
learning algorithms and neural networks, detected
whether a given tweet was ironic or not, and
classified them into four more detailed categories.
The result was that the machine learning
classifiers overfitted, and neural networks
performed better than the traditional training
methods. The system performance for subtask A
ranked above average, and subtask B didn’t
perform so well. In future work, we consider
focusing more on exploring the neural networks.

Acknowledgements

This work is supported by the Science and
Technology Commission of Shanghai
Municipality Grant (No. 15ZR1410700) and the
open project of Shanghai Key Laboratory of
Trustworthy Computing (No.07dz22304201604).

605



References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of
machine learning research, 9(Aug):1871–1874.

Cynthia Van Hee, Els Lefever, and Vronique Hoste.
Semeval-2018 task 3: Irony detection in english
tweets. In Proceedings of the 12th International
Workshop on Semantic Evaluation (SemEval-2018).

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. international
conference on learning representations.

Man Lan, Chew Lim Tan, Jian Su, and Yue Lu. 2009.
Supervised and traditional term weighting methods
for automatic text categorization. IEEE transactions
on pattern analysis and machine intelligence,
31(4):721–735.

Man Lan, Guoshun Wu, Chunyun Xiao, Yuanbin Wu,
and Ju Wu. 2016. Building mutually beneficial
relationships between question retrieval and answer
ranking to improve performance of community
question answering. pages 832–839.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their
compositionality. neural information processing
systems, pages 3111–3119.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. pages 1532–1543.

Colin Raffel and Daniel PW Ellis. 2016. Feed-forward
networks with attention can solve some long-term

memory problems. In the workshop proceedings of
ICLR 2016.

Fabrizio Sebastiani. 2002. Machine learning in
automated text categorization. ACM Computing
Surveys, 34(1):1–47.

606


