@inproceedings{liu-etal-2018-nai,
title = "{NAI}-{SEA} at {S}em{E}val-2018 Task 5: An Event Search System",
author = "Liu, Yingchi and
Li, Quanzhi and
Si, Luo",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1110",
doi = "10.18653/v1/S18-1110",
pages = "674--678",
abstract = "In this paper, we describe Alibaba{'}s participating system in the semEval-2018 Task5: Counting Events and Participants in the Long Tail. We designed and implemented a pipeline system that consists of components to extract question properties and document features, document event category classifications, document retrieval and document clustering. To retrieve the majority of the relevant documents, we carefully designed our system to extract key information from each question and document pair. After retrieval, we perform further document clustering to count the number of events. The task contains 3 subtasks, on which we achieved F1 score of 78.33, 50.52, 63.59 , respectively, for document level retrieval. Our system ranks first in all the three subtasks on document level retrieval, and it also ranks first in incident-level evaluation by RSME measure in subtask 3.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2018-nai">
<titleInfo>
<title>NAI-SEA at SemEval-2018 Task 5: An Event Search System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yingchi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quanzhi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luo</namePart>
<namePart type="family">Si</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe Alibaba’s participating system in the semEval-2018 Task5: Counting Events and Participants in the Long Tail. We designed and implemented a pipeline system that consists of components to extract question properties and document features, document event category classifications, document retrieval and document clustering. To retrieve the majority of the relevant documents, we carefully designed our system to extract key information from each question and document pair. After retrieval, we perform further document clustering to count the number of events. The task contains 3 subtasks, on which we achieved F1 score of 78.33, 50.52, 63.59 , respectively, for document level retrieval. Our system ranks first in all the three subtasks on document level retrieval, and it also ranks first in incident-level evaluation by RSME measure in subtask 3.</abstract>
<identifier type="citekey">liu-etal-2018-nai</identifier>
<identifier type="doi">10.18653/v1/S18-1110</identifier>
<location>
<url>https://aclanthology.org/S18-1110</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>674</start>
<end>678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NAI-SEA at SemEval-2018 Task 5: An Event Search System
%A Liu, Yingchi
%A Li, Quanzhi
%A Si, Luo
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F liu-etal-2018-nai
%X In this paper, we describe Alibaba’s participating system in the semEval-2018 Task5: Counting Events and Participants in the Long Tail. We designed and implemented a pipeline system that consists of components to extract question properties and document features, document event category classifications, document retrieval and document clustering. To retrieve the majority of the relevant documents, we carefully designed our system to extract key information from each question and document pair. After retrieval, we perform further document clustering to count the number of events. The task contains 3 subtasks, on which we achieved F1 score of 78.33, 50.52, 63.59 , respectively, for document level retrieval. Our system ranks first in all the three subtasks on document level retrieval, and it also ranks first in incident-level evaluation by RSME measure in subtask 3.
%R 10.18653/v1/S18-1110
%U https://aclanthology.org/S18-1110
%U https://doi.org/10.18653/v1/S18-1110
%P 674-678
Markdown (Informal)
[NAI-SEA at SemEval-2018 Task 5: An Event Search System](https://aclanthology.org/S18-1110) (Liu et al., SemEval 2018)
ACL