@inproceedings{rotsztejn-etal-2018-eth,
    title = "{ETH}-{DS}3{L}ab at {S}em{E}val-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction",
    author = "Rotsztejn, Jonathan  and
      Hollenstein, Nora  and
      Zhang, Ce",
    editor = "Apidianaki, Marianna  and
      Mohammad, Saif M.  and
      May, Jonathan  and
      Shutova, Ekaterina  and
      Bethard, Steven  and
      Carpuat, Marine",
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1112/",
    doi = "10.18653/v1/S18-1112",
    pages = "689--696",
    abstract = "Reliably detecting relevant relations between entities in unstructured text is a valuable resource for knowledge extraction, which is why it has awaken significant interest in the field of Natural Language Processing. In this paper, we present a system for relation classification and extraction based on an ensemble of convolutional and recurrent neural networks that ranked first in 3 out of the 4 Subtasks at SemEval 2018 Task 7. We provide detailed explanations and grounds for the design choices behind the most relevant features and analyze their importance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rotsztejn-etal-2018-eth">
    <titleInfo>
        <title>ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Jonathan</namePart>
        <namePart type="family">Rotsztejn</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nora</namePart>
        <namePart type="family">Hollenstein</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ce</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marianna</namePart>
            <namePart type="family">Apidianaki</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jonathan</namePart>
            <namePart type="family">May</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Steven</namePart>
            <namePart type="family">Bethard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marine</namePart>
            <namePart type="family">Carpuat</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Reliably detecting relevant relations between entities in unstructured text is a valuable resource for knowledge extraction, which is why it has awaken significant interest in the field of Natural Language Processing. In this paper, we present a system for relation classification and extraction based on an ensemble of convolutional and recurrent neural networks that ranked first in 3 out of the 4 Subtasks at SemEval 2018 Task 7. We provide detailed explanations and grounds for the design choices behind the most relevant features and analyze their importance.</abstract>
    <identifier type="citekey">rotsztejn-etal-2018-eth</identifier>
    <identifier type="doi">10.18653/v1/S18-1112</identifier>
    <location>
        <url>https://aclanthology.org/S18-1112/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>689</start>
            <end>696</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction
%A Rotsztejn, Jonathan
%A Hollenstein, Nora
%A Zhang, Ce
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F rotsztejn-etal-2018-eth
%X Reliably detecting relevant relations between entities in unstructured text is a valuable resource for knowledge extraction, which is why it has awaken significant interest in the field of Natural Language Processing. In this paper, we present a system for relation classification and extraction based on an ensemble of convolutional and recurrent neural networks that ranked first in 3 out of the 4 Subtasks at SemEval 2018 Task 7. We provide detailed explanations and grounds for the design choices behind the most relevant features and analyze their importance.
%R 10.18653/v1/S18-1112
%U https://aclanthology.org/S18-1112/
%U https://doi.org/10.18653/v1/S18-1112
%P 689-696
Markdown (Informal)
[ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction](https://aclanthology.org/S18-1112/) (Rotsztejn et al., SemEval 2018)
ACL