@inproceedings{krebs-etal-2018-semeval,
title = "{S}em{E}val-2018 Task 10: Capturing Discriminative Attributes",
author = "Krebs, Alicia and
Lenci, Alessandro and
Paperno, Denis",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1117",
doi = "10.18653/v1/S18-1117",
pages = "732--740",
abstract = "This paper describes the SemEval 2018 Task 10 on Capturing Discriminative Attributes. Participants were asked to identify whether an attribute could help discriminate between two concepts. For example, a successful system should determine that {`}urine{'} is a discriminating feature in the word pair {`}kidney{'}, {`}bone{'}. The aim of the task is to better evaluate the capabilities of state of the art semantic models, beyond pure semantic similarity. The task attracted submissions from 21 teams, and the best system achieved a 0.75 F1 score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="krebs-etal-2018-semeval">
<titleInfo>
<title>SemEval-2018 Task 10: Capturing Discriminative Attributes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alicia</namePart>
<namePart type="family">Krebs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Paperno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the SemEval 2018 Task 10 on Capturing Discriminative Attributes. Participants were asked to identify whether an attribute could help discriminate between two concepts. For example, a successful system should determine that ‘urine’ is a discriminating feature in the word pair ‘kidney’, ‘bone’. The aim of the task is to better evaluate the capabilities of state of the art semantic models, beyond pure semantic similarity. The task attracted submissions from 21 teams, and the best system achieved a 0.75 F1 score.</abstract>
<identifier type="citekey">krebs-etal-2018-semeval</identifier>
<identifier type="doi">10.18653/v1/S18-1117</identifier>
<location>
<url>https://aclanthology.org/S18-1117</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>732</start>
<end>740</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SemEval-2018 Task 10: Capturing Discriminative Attributes
%A Krebs, Alicia
%A Lenci, Alessandro
%A Paperno, Denis
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F krebs-etal-2018-semeval
%X This paper describes the SemEval 2018 Task 10 on Capturing Discriminative Attributes. Participants were asked to identify whether an attribute could help discriminate between two concepts. For example, a successful system should determine that ‘urine’ is a discriminating feature in the word pair ‘kidney’, ‘bone’. The aim of the task is to better evaluate the capabilities of state of the art semantic models, beyond pure semantic similarity. The task attracted submissions from 21 teams, and the best system achieved a 0.75 F1 score.
%R 10.18653/v1/S18-1117
%U https://aclanthology.org/S18-1117
%U https://doi.org/10.18653/v1/S18-1117
%P 732-740
Markdown (Informal)
[SemEval-2018 Task 10: Capturing Discriminative Attributes](https://aclanthology.org/S18-1117) (Krebs et al., SemEval 2018)
ACL