@inproceedings{sysoev-mayorov-2018-texterra,
title = "Texterra at {S}em{E}val-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classification in Scientific Papers",
author = "Sysoev, Andrey and
Mayorov, Vladimir",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1131",
doi = "10.18653/v1/S18-1131",
pages = "821--825",
abstract = "In this work we evaluate applicability of entity pair models and neural network architectures for relation extraction and classification in scientific papers at SemEval-2018. We carry out experiments with representing entity pairs through sentence tokens and through shortest path in dependency tree, comparing approaches based on convolutional and recurrent neural networks. With convolutional network applied to shortest path in dependency tree we managed to be ranked eighth in subtask 1.1 ({``}clean data{''}), ninth in 1.2 ({``}noisy data{''}). Similar model applied to separate parts of the shortest path was mounted to ninth (extraction track) and seventh (classification track) positions in subtask 2 ranking.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sysoev-mayorov-2018-texterra">
<titleInfo>
<title>Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classification in Scientific Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrey</namePart>
<namePart type="family">Sysoev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Mayorov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work we evaluate applicability of entity pair models and neural network architectures for relation extraction and classification in scientific papers at SemEval-2018. We carry out experiments with representing entity pairs through sentence tokens and through shortest path in dependency tree, comparing approaches based on convolutional and recurrent neural networks. With convolutional network applied to shortest path in dependency tree we managed to be ranked eighth in subtask 1.1 (“clean data”), ninth in 1.2 (“noisy data”). Similar model applied to separate parts of the shortest path was mounted to ninth (extraction track) and seventh (classification track) positions in subtask 2 ranking.</abstract>
<identifier type="citekey">sysoev-mayorov-2018-texterra</identifier>
<identifier type="doi">10.18653/v1/S18-1131</identifier>
<location>
<url>https://aclanthology.org/S18-1131</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>821</start>
<end>825</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classification in Scientific Papers
%A Sysoev, Andrey
%A Mayorov, Vladimir
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F sysoev-mayorov-2018-texterra
%X In this work we evaluate applicability of entity pair models and neural network architectures for relation extraction and classification in scientific papers at SemEval-2018. We carry out experiments with representing entity pairs through sentence tokens and through shortest path in dependency tree, comparing approaches based on convolutional and recurrent neural networks. With convolutional network applied to shortest path in dependency tree we managed to be ranked eighth in subtask 1.1 (“clean data”), ninth in 1.2 (“noisy data”). Similar model applied to separate parts of the shortest path was mounted to ninth (extraction track) and seventh (classification track) positions in subtask 2 ranking.
%R 10.18653/v1/S18-1131
%U https://aclanthology.org/S18-1131
%U https://doi.org/10.18653/v1/S18-1131
%P 821-825
Markdown (Informal)
[Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classification in Scientific Papers](https://aclanthology.org/S18-1131) (Sysoev & Mayorov, SemEval 2018)
ACL