@inproceedings{dragoni-2018-neurosent-pdi-semeval,
title = "{NEUROSENT}-{PDI} at {S}em{E}val-2018 Task 7: Discovering Textual Relations With a Neural Network Model",
author = "Dragoni, Mauro",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1136/",
doi = "10.18653/v1/S18-1136",
pages = "848--852",
abstract = "Discovering semantic relations within textual documents is a timely topic worthy of investigation. Natural language processing strategies are generally used for linking chunks of text in order to extract information that can be exploited by semantic search engines for performing complex queries. The scientific domain is an interesting area where these techniques can be applied. In this paper, we describe a system based on neural networks applied to the SemEval 2018 Task 7. The system relies on the use of word embeddings for composing the vectorial representation of text chunks. Such representations are used for feeding a neural network aims to learn the structure of paths connecting chunks associated with a specific relation. Preliminary results demonstrated the suitability of the proposed approach encouraging the investigation of this research direction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dragoni-2018-neurosent-pdi-semeval">
<titleInfo>
<title>NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a Neural Network Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mauro</namePart>
<namePart type="family">Dragoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Discovering semantic relations within textual documents is a timely topic worthy of investigation. Natural language processing strategies are generally used for linking chunks of text in order to extract information that can be exploited by semantic search engines for performing complex queries. The scientific domain is an interesting area where these techniques can be applied. In this paper, we describe a system based on neural networks applied to the SemEval 2018 Task 7. The system relies on the use of word embeddings for composing the vectorial representation of text chunks. Such representations are used for feeding a neural network aims to learn the structure of paths connecting chunks associated with a specific relation. Preliminary results demonstrated the suitability of the proposed approach encouraging the investigation of this research direction.</abstract>
<identifier type="citekey">dragoni-2018-neurosent-pdi-semeval</identifier>
<identifier type="doi">10.18653/v1/S18-1136</identifier>
<location>
<url>https://aclanthology.org/S18-1136/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>848</start>
<end>852</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a Neural Network Model
%A Dragoni, Mauro
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F dragoni-2018-neurosent-pdi-semeval
%X Discovering semantic relations within textual documents is a timely topic worthy of investigation. Natural language processing strategies are generally used for linking chunks of text in order to extract information that can be exploited by semantic search engines for performing complex queries. The scientific domain is an interesting area where these techniques can be applied. In this paper, we describe a system based on neural networks applied to the SemEval 2018 Task 7. The system relies on the use of word embeddings for composing the vectorial representation of text chunks. Such representations are used for feeding a neural network aims to learn the structure of paths connecting chunks associated with a specific relation. Preliminary results demonstrated the suitability of the proposed approach encouraging the investigation of this research direction.
%R 10.18653/v1/S18-1136
%U https://aclanthology.org/S18-1136/
%U https://doi.org/10.18653/v1/S18-1136
%P 848-852
Markdown (Informal)
[NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a Neural Network Model](https://aclanthology.org/S18-1136/) (Dragoni, SemEval 2018)
ACL