@inproceedings{pratap-etal-2018-talla,
title = "Talla at {S}em{E}val-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional Neural Networks",
author = "Pratap, Bhanu and
Shank, Daniel and
Ositelu, Oladipo and
Galbraith, Byron",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1139",
doi = "10.18653/v1/S18-1139",
pages = "863--867",
abstract = "This paper describes our approach to SemEval-2018 Task 7 {--} given an entity-tagged text from the ACL Anthology corpus, identify and classify pairs of entities that have one of six possible semantic relationships. Our model consists of a convolutional neural network leveraging pre-trained word embeddings, unlabeled ACL-abstracts, and multiple window sizes to automatically learn useful features from entity-tagged sentences. We also experiment with a hybrid loss function, a combination of cross-entropy loss and ranking loss, to boost the separation in classification scores. Lastly, we include WordNet-based features to further improve the performance of our model. Our best model achieves an F1(macro) score of 74.2 and 84.8 on subtasks 1.1 and 1.2, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pratap-etal-2018-talla">
<titleInfo>
<title>Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhanu</namePart>
<namePart type="family">Pratap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Shank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oladipo</namePart>
<namePart type="family">Ositelu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Galbraith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our approach to SemEval-2018 Task 7 – given an entity-tagged text from the ACL Anthology corpus, identify and classify pairs of entities that have one of six possible semantic relationships. Our model consists of a convolutional neural network leveraging pre-trained word embeddings, unlabeled ACL-abstracts, and multiple window sizes to automatically learn useful features from entity-tagged sentences. We also experiment with a hybrid loss function, a combination of cross-entropy loss and ranking loss, to boost the separation in classification scores. Lastly, we include WordNet-based features to further improve the performance of our model. Our best model achieves an F1(macro) score of 74.2 and 84.8 on subtasks 1.1 and 1.2, respectively.</abstract>
<identifier type="citekey">pratap-etal-2018-talla</identifier>
<identifier type="doi">10.18653/v1/S18-1139</identifier>
<location>
<url>https://aclanthology.org/S18-1139</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>863</start>
<end>867</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional Neural Networks
%A Pratap, Bhanu
%A Shank, Daniel
%A Ositelu, Oladipo
%A Galbraith, Byron
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F pratap-etal-2018-talla
%X This paper describes our approach to SemEval-2018 Task 7 – given an entity-tagged text from the ACL Anthology corpus, identify and classify pairs of entities that have one of six possible semantic relationships. Our model consists of a convolutional neural network leveraging pre-trained word embeddings, unlabeled ACL-abstracts, and multiple window sizes to automatically learn useful features from entity-tagged sentences. We also experiment with a hybrid loss function, a combination of cross-entropy loss and ranking loss, to boost the separation in classification scores. Lastly, we include WordNet-based features to further improve the performance of our model. Our best model achieves an F1(macro) score of 74.2 and 84.8 on subtasks 1.1 and 1.2, respectively.
%R 10.18653/v1/S18-1139
%U https://aclanthology.org/S18-1139
%U https://doi.org/10.18653/v1/S18-1139
%P 863-867
Markdown (Informal)
[Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional Neural Networks](https://aclanthology.org/S18-1139) (Pratap et al., SemEval 2018)
ACL